Circumbinary castaways: Short-period binary systems can eject orbiting worlds

April 12, 2018 by Peter Kelley, University of Washington
This artist’s concept illustrates Kepler-16b, the first planet known to orbit two stars – what’s called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA’s Kepler mission. New research from the University of Washington indicates that certain shot-period binary star systems eject circumbinary planets as a consequence of the host stars’ evolution. Credit: NASA/JPL-Caltech/T. Pyle

Planets orbiting "short-period" binary stars, or stars locked in close orbital embrace, can be ejected off into space as a consequence of their host stars' evolution, according to new research from the University of Washington.

The findings help explain why astronomers have detected few circumbinary planets—which orbit that in turn orbit each other—despite observing thousands of short-term binary stars, or ones with orbital periods of 10 days or less.

It also means that such binary star systems are a poor place to aim coming ground- and space-based telescopes to look for habitable planets and life beyond Earth.

There are several different types of binary stars, such as visual and spectroscopic binaries, named for the ways astronomers are able to observe them. In a paper accepted for publication in Astrophysical Journal, lead author David Fleming, a UW astronomy doctoral student, studies eclipsing binaries, or those where the orbital plane is so near the line of sight, both stars are seen to cross in front of each other. Fleming will present the paper at the Division on Dynamical Astronomy conference April 15-19.

When eclipsing binaries orbit each other closely, within about 10 days or less, Fleming and co-authors wondered, do tides—the gravitational forces each exerts on the other—have "dynamical consequences" to the star system?

"That's actually what we found" using computer simulations, Fleming said. "Tidal forces transport angular momentum from the stellar rotations to the orbits. They slow down the stellar rotations, expanding the orbital period."

This transfer of angular momentum causes the orbits not only to enlarge but also to circularize, morphing from being eccentric, or football-shaped, to perfect circles. And over very long time scales, the spins of the two stars also become synchronized, as the moon is with the Earth, with each forever showing the same face to the other.

The expanding stellar orbit "engulfs planets that were originally safe, and then they are no longer safe—and they get thrown out of the system," said Rory Barnes, UW assistant professor of astronomy and a co-author on the paper. And the ejection of one planet in this way can perturb the orbits of other orbiting worlds in a sort of cascading effect, ultimately sending them out of the system as well.

Making things even more difficult for circumbinary planets is what astronomers call a "region of instability" created by the competing gravitational pulls of the two stars. "There's a region that you just can't cross—if you go in there, you get ejected from the system," Fleming said. "We've confirmed this in simulations, and many others have studied the region as well."

This is called the "dynamical stability limit." It moves outward as the stellar orbit increases, enveloping planets and making their orbits unstable, and ultimately tossing them from the system.

Another intriguing characteristic of such binary systems, detected by others over the years, Fleming said, is that planets tend to just outside this stability limit, to "pile up" there. How planets get to the region is not fully known; they may form there, or they may migrate inward from further out in the system.

Applying their model to known short-period , Fleming and co-authors found that this stellar-tidal evolution of binary stars removes at least one planet in 87 percent of multiplanet circumbinary systems, and often more. And even this is likely a conservative estimate; Barnes said the number may be as high as 99 percent.

The researchers have dubbed the process the Stellar Tidal Evolution Ejection of Planets, or STEEP. Future detections—"or non-detections"—of circumbinary around short-period binary stars, the authors write, will "will provide the best indirect observational test of the STEEP process.

The shortest-period binary star system around which a circumbinary planet has been discovered was Kepler 47, with a period of about 7.45 days. The co-authors suggest that future studies looking to find and study possibly around short-term should focus on those with longer orbital periods than about 7.5 days.

Fleming and Barnes' co-authors are UW astronomy professor Tom Quinn, post-doctoral researcher Rodrigo Luger and undergraduate student David E. Graham. This work used storage and networking infrastructure provided by the Hyak supercomputer system at the UW, funded by the UW's Student Technology Fee.

As for habitability and the search for life, Fleming said orbiting short-term eclipsing binaries might otherwise be attractive targets for closer study, with their edge-on angle showing eclipses, and more, to the distant viewer.

"But this mechanism tends to kill them," he added. "So, it's not a good place to look."

Explore further: Astronomers discover an M-dwarf eclipsing binary system

More information: On The Lack of Circumbinary Planets Orbiting Isolated Binary Stars, arXiv:1804.03676 [astro-ph.SR] arxiv.org/abs/1804.03676

Related Stories

Astronomers discover an M-dwarf eclipsing binary system

January 4, 2018

Astronomers have found a new eclipsing binary system by analyzing archival survey data and conducting follow-up radial velocity measurements. The newly found binary, designated SDSSJ1156-0207, is composed of two M-dwarf stars ...

Half of all exoplanet host stars are binaries

September 4, 2014

(Phys.org) —Imagine living on an exoplanet with two suns. One, you orbit and the other is a very bright, nearby neighbor looming large in your sky. With this "second sun" in the sky, nightfall might be a rare event, perhaps ...

Astronomers bring a new hope to find 'Tatooine' planets

July 16, 2015

Sibling suns – made famous in the "Star Wars" scene where Luke Skywalker gazes toward a double sunset – and the planets around them may be more common than we've thought, and Cornell astronomers are presenting new ideas ...

Recommended for you

NASA's 1st flight to moon, Apollo 8, marks 50th anniversary

December 18, 2018

Fifty years ago on Christmas Eve, a tumultuous year of assassinations, riots and war drew to a close in heroic and hopeful fashion with the three Apollo 8 astronauts reading from the Book of Genesis on live TV as they orbited ...

New bright high-redshift quasar discovered using VISTA

December 18, 2018

Using the Visible and Infrared Survey Telescope for Astronomy (VISTA), astronomers have detected a new bright quasar at a redshift of about 6.8. The newly identified quasar, designated VHS J0411-0907, is the brightest object ...

Mystery of coronae around supermassive black holes deepens

December 18, 2018

Researchers from RIKEN and JAXA have used observations from the ALMA radio observatory located in northern Chile and managed by an international consortium including the National Astronomical Observatory of Japan (NAOJ) to ...

A new neptune-size exoplanet

December 16, 2018

The remarkable exoplanet discoveries made by the Kepler and K2 missions have enabled astronomers to begin to piece together the history of the Earth and to understand how and why it differs from its diverse exoplanetary cousins. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.