How are the bacteria in our guts related to each other? New technique provides insight

April 23, 2018 by Deborah Bright, University of California - San Diego
Credit: iStock

Researchers at the University of California Center for Microbiome Innovation (CMI) have validated a new method for use in microbiome studies that could help detect subtle changes in the composition of a microbial community and provide insight into the evolutionary history of community members. The method is more sensitive than current technologies, and could revolutionize the way microbiome data is analyzed. The findings are published April 17 in mSystems.

When trying to determine the identity of the bacteria that reside in a given environment, such as the human gut, researchers often look for differences in the gene encoding the 16S molecule, which is necessary for bacterial reproduction.

"All bacteria have the 16S gene", said Stefan Janssen, postdoc in the laboratory of CMI director and UC San Diego professor of pediatrics and computer science and engineering Rob Knight. "If they didn't, they couldn't reproduce. We can tell who's who by looking at the nucleotide sequence of this gene."

The sequences are different between bacterial species because the natural process of copying one's DNA is error-prone, and can introduce changes to the genetic material—one of the things that can lead to the rise of new species. Using these sequences, researchers can trace and construct the evolutionary history of the from scratch.

Why is understanding the evolutionary history of organisms important? It's the foundation for innovation, says Janssen.

"We can infer similar functionality for closely related organisms," said Janssen. "This enables us to exploit biology—take what nature has been doing for centuries and maximize its potential for the good of humanity."

But there's a problem with trying to construct the evolutionary history of an organism, or a group of organisms, from scratch using 16S sequences: it's often wrong.

"Scientists sometimes use what's called a 'reference phylogenetic tree'," said Janssen. "Phylogenetic trees are a way for us to visualize the of an organism. They can be useful for determining the complexity of the microbes in a sample (how different they are from each other), and for comparing the microbes in one sample to those in another. Unfortunately, the short sequences generated by 16S sequencing don't contain enough information for us to be able to accurately reference an existing tree."

To solve this problem, Janssen and his team have applied a new algorithm and existing methodology to insert the short fragments of DNA generated by 16S sequencing into reference trees. The technology is more accurate and more sensitive than creating a tree from scratch, which will allow researchers to get more out of the data.

In fact, Janssen says, we might even be able to detect small changes in the gut microbiome that are due to things like dietary changes. "We can easily tell the difference between a skin sample and a stool sample, in terms of microbial community composition. But subtle changes, like who's there when someone changes their diet, may only be detectable with this technology."

The researchers validated the new methodology using bird poop:

Fecal samples were taken from nine different bird species that breed on the Alaska mainland. The birds were in different developmental stages: either hatch year or adult. Using the new methodology, the researchers were able to detect differences in the present in the younger birds versus the adult birds—an effect that could not be seen using current methods.

"Our findings have huge implications for pre- and probiotics studies," said Janssen. "The shift in the community may be so small that only this technology could pick up the difference between treatment and control groups."

The paper is titled, "Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information". 

Explore further: OpenWings project: Scientists to build the avian tree of life

More information: Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information, mSystems, DOI: 10.1128/mSystems.00021-18

Related Stories

OpenWings project: Scientists to build the avian tree of life

April 11, 2018

Birds are the only surviving descendants of dinosaurs. Birds also are used to study a large range of fundamental topics in biology from understanding the evolution of mating systems to learning about the genetic and environmental ...

Researchers develop powerful new method for microbiome analysis

December 11, 2017

Scientists from the Icahn School of Medicine at Mount Sinai, Sema4, and collaborating institutions New York University and the University of Florida today published a report detailing their new, more accurate method for identifying ...

Viruses that infect bacteria abound in bladder

January 29, 2018

Phages—viruses that infect bacteria—are abundant in the bacteria that inhabit the female bladder. This is good news, because phage could be used as alternative treatment when antibiotics become resistant to pathogenic ...

Count your blessings: Quantitative microbiome profiling

November 16, 2017

A broad range of metabolic and inflammatory diseases is associated with alterations in gut microbiota composition and metabolic potential. Until now, sequencing-based gut microbiota research has described such dysbiotic states ...

Recommended for you

Humans account for little next to plants, worms, bugs

May 21, 2018

When you weigh all life on Earth, billions of humans don't amount to much compared to trees, earthworms or even viruses. But we really know how to throw what little weight we have around, according to a first-of-its-kind ...

How animals holler

May 21, 2018

While humans can only broadcast about one percent of their vocal power through their speech, some animals and mammals are able to broadcast 100 percent. The secret to their long-range howls? A combination of high pitch, a ...

Profiling the genome hundreds of variations at a time

May 21, 2018

Geneticists have been using model organisms ranging from the house mouse to the single-cell bakers' yeast, Saccharomyces cerevisiae, to study basic biological processes that regulate human development and physiology, and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.