Plants use advertising-like strategies to attract bees with colour and scent

April 16, 2018 by Aphrodite Kantsa And Adrian Dyer, The Conversation
A honeybee (left), a scarab beetle (middle), and a fly (right) feeding on flowers of the white rock rose in a Mediterranean scrubland. Credit: Aphrodite Kantsa

Watching plants and pollinators such as bees can teach us a lot about how complex networks work in nature.

There are thousands of of bees around the world, and they all share a common visual system: their eyes are sensitive to ultraviolet, blue and green wavelengths of the light spectrum.

This ancient colour visual system predates the evolution of , and so flowers from around the world have typically evolved colourful blooms that are easily seen by bees.

For example, flowers as perceived by ultraviolet-sensitive visual systems look completely different than what humans can see.

However, we know that flowers also produce a variety of complex, captivating scents. So in complex natural environments, what signal should best enable a bee to find flowers: colour or ?

Our latest research uncovered a surprising outcome. It seems that rather that trying to out-compete each other in colour and scent for bee attention, flowers may work together to attract pollinators en masse. It's the sort of approach that also works in the world of advertising.

Read more: Want a better camera? Just copy bees and their extra light-sensing eyes

Daunting amount of field work

Classic thinking would suggest that flowers of a particular species should have reasonably unique flower signatures. It makes sense that this should promote the capacity of a bee to constantly find the same rewarding species of flower, promoting efficient transfer of pollen.

So a competition view of flower evolution for different flower species with the same colour – for example purple – would suggest that each flowering plant species should benefit from having different scents to enable pollinator constancy and flower fidelity. By the same logic, flowers with the same scents should have different colours so they're easily distinguished.

To know for sure what happens requires a daunting amount of field work. The challenges include measuring flower colours using a spectrophotometer (a very sensitive instrument that detects subtle colour differences) and also capturing live flower scent emissions with special pumps and chemical traps.

At the same time, in order to record the actual pollinator "clientele" of the flowers, detailed recordings of visits are required. These data are then built into models for bee perception. Statistical analyses allow us to understand the complex interactions that are present in a real world evolved system.

A wild bee of the genus Anthophora upon making the decision to visit the flowers of purple viper’s bugloss, in a Mediterranean scrubland in Greece. Credit: Aphrodite Kantsa

Not what we thought

And what we found was unexpected. In two new papers, published in Nature Ecology & Evolution and in Nature Communications, we found the opposite to competition happens: flowers have evolved signals that work together to facilitate visits by bees.

So flowers of different, completely unrelated species might "smell like purple," whilst red coloured species share another scent. This is not what is expected at all by competition, so why in a highly evolved classical signal receiver has this happened?

The data suggests that flowers do better by attracting more pollinators to a set of reliable signals, rather than trying to use unique signals to maximise individual species.

By having reliable multimodal signals that act in concert to allow for easy finding of rewarding flowers, even of different species, more pollinators must be facilitated to transfer pollen between flowers of the same species.

Lessons for advertising

A lot of research on advertising and marketing is concerned with consumer behaviour: how we make choices. What drives our decision-making when foraging in a complex environment?

While a lot of modern marketing emphasises product differentiation and competition to promote sales, our new research suggests that nature can favour facilitation. It appears that by sharing desirable characteristics, a system can be more efficient.

This facilitation mechanism is sometimes favoured by industry bodies, for example Australian avocados and Australian honey. En masse promotion of the desirable characteristics of similar products can grow supporter base and build sales. Our research suggests evolution has favoured this solution, which may hold important lessons for other complex market based systems.

A successful colour–scent combination targeted at attracting bees can be adopted by several different plant species in the same community, implying that natural ecosystems can function as a "buyers markets."

We also know from research that flowers can evolve and change colours to suit the local pollinators. Colours can thus be changed by flowers if instead of bees pollinating flowers, flies, with different colour perception and preferences, dominate the community.

These findings can also prove useful for identifying those -scent combinations that are the most influential for the community. This way, the restoration of damaged or disrupted plant-pollinator communities can become better managed to be more efficient in the future.

When next enjoying a walk in a blooming meadow, remember plants' strategies. The colourful flowers and the mesmerising scents you experience may have evolved to cleverly allure the efficient of the region.

Explore further: Droughts mean fewer flowers for bees

Related Stories

Droughts mean fewer flowers for bees

April 11, 2018

Bees could be at risk from climate change because more frequent droughts could cause plants to produce fewer flowers, new research shows.

Bees use invisible heat patterns to choose flowers

December 19, 2017

A new study, led by scientists from the University of Bristol, has found that a wide range of flowers produce not just signals that we can see and smell, but also ones that are invisible such as heat.

Flowers use physics to attract pollinators

December 5, 2016

A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.

How urban heat affects bee populations

February 22, 2018

North Carolina is home to 500 species of wild bees, yet only a subset of these are common in cities and suburbs. People encourage wild bees by planting flowers and creating pollinator gardens to provide the pollen and nectar ...

Recommended for you

How leaves talk to roots

September 26, 2018

New findings show that a micro RNA from the shoot keeps legume roots susceptible to symbiotic infection by downregulating a gene that would otherwise hinder root responses to symbiotic bacteria. These findings reveal what ...

Microbial dark matter dominates Earth's environments

September 26, 2018

Uncultured microbes—those whose characteristics have never been described because they have not yet been grown in a lab culture—could be dominating nearly all the environments on Earth except for the human body, according ...

Team names world's largest ever bird—Vorombe titan

September 25, 2018

After decades of conflicting evidence and numerous publications, scientists at international conservation charity ZSL's (Zoological Society of London) Institute of Zoology, have finally put the 'world's largest bird' debate ...

The grim, final days of a mother octopus

September 25, 2018

Octopuses are the undisputed darlings of the science internet, and for good reason. They're incredibly intelligent problem-solvers and devious escape artists with large, complex nervous systems. They have near-magical abilities ...

Climate change not main driver of amphibian decline

September 25, 2018

While a warming climate in recent decades may be a factor in the waning of some local populations of frogs, toads, newts and salamanders, it cannot explain the overall steep decline of amphibians, according to researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.