Fat-sensing hormone helps control tadpole metamorphosis

March 29, 2018, University of Michigan

When tadpoles are but tadpoles, they're voracious eaters, chomping down all of the plant matter in their paths.

Now, a University of Michigan study has shown that this voraciousness is because the hormonal and neural brakes to their eating are absent at this stage of development.

"One of the findings from our work is that during the tadpole stage, before they initiate metamorphosis, they don't have any of these homeostatic negative controls of : they have their feeding controls stuck in the 'on' position," said lead author Robert Denver. "This allows the to reach, as quickly as possible, a minimum body size for metamorphosis. If you watch some species of tadpole while they're eating, they look like tiny piranhas."

But just as they prepare to vault into frogdom, , a hormone produced by fat that signals energy stores to the brain and suppresses the feeling of hunger, spikes in the tadpoles. This spike in leptin may signal to the brain that the tadpoles have enough energy stores to go through the exhausting process of metamorphosis.

The spike in leptin just before the beginning of metamorphosis helps regions in the brain that hormone production and food intake mature. As the animal progresses through metamorphosis, its brain develops the ability to respond to leptin by shutting off feeding. This action of leptin is important for the tadpoles because they need to pause their eating at the climax of metamorphosis so that their bodies can overhaul their guts.

The guts are remodeled from a meters-long system that digests a vegetarian diet to a much shorter gut that digests only animal matter. This timing is a tricky balance to get right, says Denver, professor and chair of the U-M Department of Molecular, Cellular and Developmental Biology.

"Most research supports that tadpoles will capitalize on growth conditions because the bigger you are, the less likely you'll get picked off by predators, and you'll be a more effective predator once you become a frog," he said. "On the other hand, if the larval habitat is not favorable—if there are a lot of predators, or if it's going to dry out—tadpoles will initiate metamorphosis early."

To test whether it was leptin that shut off feeding in the tadpoles' brains, Denver and his team injected one group of tadpoles with a saline control. They gave another group of tadpoles a leptin injection. The tadpoles injected with saline continued to eat, but the tadpoles with the leptin injection stopped completely. This occurred in tadpoles that were going through , but not in younger tadpoles.

The researchers also demonstrated that leptin controls the suppression of feeding at metamorphic climax when the gut remodels to support a carnivorous diet. They did this by blocking the leptin signal in the tadpoles' brains, which caused the tadpoles to resume feeding.

Denver says there are interesting parallels between this process in amphibians and the same process in mammals. Neonatal rats similarly feed (suckle) voraciously until leptin kicks in, at which point they develop negative homeostatic controls so that they don't overeat. This allows the hypothalamus, a region that controls feeding, to mature and prepare the rat to eat solid food.

"What's happening in the amphibian tadpole is a very ancient process—it's a developmental, hormonal process that controls the timing of the development of the neural feeding circuitry, which also influences life history transitions," Denver said. "In a tadpole, compared to mammals, the morphological change is much more dramatic."

The team's research is published in the Proceedings of the Royal Society B.

Explore further: Tadpoles found to jump on backs of unknown adults to escape cannibalistic siblings

More information: Melissa Cui Bender et al. To eat or not to eat: ontogeny of hypothalamic feeding controls and a role for leptin in modulating life-history transition in amphibian tadpoles, Proceedings of the Royal Society B: Biological Sciences (2018). DOI: 10.1098/rspb.2017.2784

Related Stories

Stressed-out tadpoles grow larger tails to escape predators

March 5, 2013

When people or animals are thrust into threatening situations such as combat or attack by a predator, stress hormones are released to help prepare the organism to defend itself or to rapidly escape from danger—the so-called ...

Tadpoles not just baby frogs

February 6, 2013

(Phys.org)—Tadpoles may be vital in helping maintain the ecosystems of freshwater streams, a James Cook University researcher is discovering.

Foster tadpoles trigger parental instinct in poison frogs

September 20, 2017

Poison frogs, especially male poison frogs, are very caring parents. After the tadpoles hatch, the males piggyback their offspring to distant pools spread around the rainforest where they can feed and develop. In a recent ...

Recommended for you

Fungus senses gravity using gene borrowed from bacteria

April 24, 2018

The pin mold fungus Phycomyces blakesleeanus forms a dense forest of vertically growing fruiting bodies, but how does it know which way is "up"? New research publishing 24 April in the open access journal PLOS Biology, from ...

Team discovers a new take on early evolution of photosynthesis

April 24, 2018

A team of scientists from Arizona State University's School of Molecular Sciences has begun re-thinking the evolutionary history of photochemical reaction centers (RCs). Their analysis was recently published online in Photosynthesis ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.