Desertification and monsoon climate change linked to shifts in ice volume and sea level

March 7, 2018, Uppsala University
Desertification and monsoon climate change linked to shifts in ice volume and sea level
Credit: Uppsala University

The East Asian summer monsoon and desertification in Eurasia is driven by fluctuating Northern Hemisphere ice volume and global sea level during the Ice Age, as shown in a study published in Nature Communications. Today, two thirds of the world's population is dependent on agriculture sustained by rains of the East Asian summer monsoon, and future climate change in this region can therefore have a major impact on global food production.

Huge areas of central China is covered by a plateau consisting of a fine grained soil type called loess – a sediment deposited here by winds during the Ice Age. The soils formed on loess are very fertile and have been one of the key factors driving cultural development and population growth in China for thousands of years. Additionally, the loess plateau also contains a geological archive that can be used to decipher past climate changes.

Through detailed examination of the loess sediments, a group led by researchers at Uppsala University together with colleagues from Denmark has identified how changes in climatological phenomena such as ice volume and also affected the extent of deserts in China, as well as the behavior of the East Asian monsoon.

"We have conducted the most detailed dating of the loess to date, which has enabled us to identify changes in the monsoon and desertification processes in more detail and with much greater accuracy than previously possible. We can now compare these changes to other known climate changes such as variation in ice volume, sea level and even the Earth's orbit during the Ice Age", says Dr. Thomas Stevens, first author and researcher at Uppsala University.

"We can now show that when ice volume decreased and sea level rose, the summer monsoon rainfalls in East Asia intensified and spread further inland, while sandy deserts in China retreated", says Dr. Stevens.

With today's shrinking ice caps and rising sea levels, this has implications for how the Eurasian continent will once again experience changes in the summer rainfall and desertification.

Explore further: Global warming may cause East Asian monsoon belt to shift north

More information: T. Stevens et al. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site, Nature Communications (2018). DOI: 10.1038/s41467-018-03329-2

Related Stories

Quirky summer monsoon behaviors affect rainfall in East Asia

December 20, 2016

In 2010, 28 regions in China suffered a five-month-long flood. This disaster resulted in over 4000 people dead or missing, and over U.S. $50 billion in property loss. In 1987, India experienced one of the worst droughts in ...

Recommended for you

Study finds climate determines shapes of river basins

July 18, 2018

There are more than 1 million river basins carved into the topography of the United States, each collecting rainwater to feed the rivers that cut through them. Some basins are as small as individual streams, while others ...

New insight into Greenland's melting glaciers

July 17, 2018

New research into Greenland's glaciers will help bring accurate sea level rise forecasts – which are crucial in preparing for the impacts of climate change—a step closer.

Thawing permafrost microbiomes fuel climate change

July 16, 2018

A University of Queensland-led international study could lead to more accurate predictions or the rate of global warming from greenhouse gas emissions produced by thawing permafrost in the next 100 years.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.