Desertification and monsoon climate change linked to shifts in ice volume and sea level

March 7, 2018, Uppsala University
Desertification and monsoon climate change linked to shifts in ice volume and sea level
Credit: Uppsala University

The East Asian summer monsoon and desertification in Eurasia is driven by fluctuating Northern Hemisphere ice volume and global sea level during the Ice Age, as shown in a study published in Nature Communications. Today, two thirds of the world's population is dependent on agriculture sustained by rains of the East Asian summer monsoon, and future climate change in this region can therefore have a major impact on global food production.

Huge areas of central China is covered by a plateau consisting of a fine grained soil type called loess – a sediment deposited here by winds during the Ice Age. The soils formed on loess are very fertile and have been one of the key factors driving cultural development and population growth in China for thousands of years. Additionally, the loess plateau also contains a geological archive that can be used to decipher past climate changes.

Through detailed examination of the loess sediments, a group led by researchers at Uppsala University together with colleagues from Denmark has identified how changes in climatological phenomena such as ice volume and also affected the extent of deserts in China, as well as the behavior of the East Asian monsoon.

"We have conducted the most detailed dating of the loess to date, which has enabled us to identify changes in the monsoon and desertification processes in more detail and with much greater accuracy than previously possible. We can now compare these changes to other known climate changes such as variation in ice volume, sea level and even the Earth's orbit during the Ice Age", says Dr. Thomas Stevens, first author and researcher at Uppsala University.

"We can now show that when ice volume decreased and sea level rose, the summer monsoon rainfalls in East Asia intensified and spread further inland, while sandy deserts in China retreated", says Dr. Stevens.

With today's shrinking ice caps and rising sea levels, this has implications for how the Eurasian continent will once again experience changes in the summer rainfall and desertification.

Explore further: Global warming may cause East Asian monsoon belt to shift north

More information: T. Stevens et al. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site, Nature Communications (2018). DOI: 10.1038/s41467-018-03329-2

Related Stories

Quirky summer monsoon behaviors affect rainfall in East Asia

December 20, 2016

In 2010, 28 regions in China suffered a five-month-long flood. This disaster resulted in over 4000 people dead or missing, and over U.S. $50 billion in property loss. In 1987, India experienced one of the worst droughts in ...

Recommended for you

Propping up glaciers to avoid cataclysmic sea level rise

September 20, 2018

As global warming outpaces efforts to tame it, scientists have proposed building massive underwater structures to prevent an Antarctic glacier the size of Britain from sliding into the sea and lifting the world's oceans by ...

NASA balloon mission captures electric blue clouds

September 20, 2018

On the cusp of our atmosphere live a thin group of seasonal electric blue clouds. Forming 50 miles above the poles in summer, these clouds are known as noctilucent clouds or polar mesospheric clouds—PMCs. A recent NASA ...

Study tracks Hurricane Harvey stormwater with GPS

September 20, 2018

Hurricane Harvey dumped more than 5 feet (1.5 meters) of water on southeast Texas in late August 2017, making it the wettest recorded hurricane in U.S. history. But after the storm passed, where did all that water go?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.