Chirping is welcome in birds but not in fusion devices—scientists show that weak turbulence makes chirping more likely

March 16, 2018 by John Greenwald, Princeton Plasma Physics Laboratory
Physicist Vinicius Duarte, left, and advisor and coauthor Nikolai Gorelenkov. Credit: Elle Starkman/PPPL Office of Communications

Birds do it and so do doughnut-shaped fusion facilities called "tokamaks." But tokamak chirping— a rapidly changing frequency wave that can be far above what the human ear can detect—is hardly welcome to researchers who seek to bring the fusion that powers the sun and stars to Earth. Such chirping signals a loss of heat that can slow fusion reactions, a loss that has long puzzled scientists.

Compounding the puzzle is that some tokamaks chirp more frequently than others. For example, chirps have commonly occurred in the National Spherical Torus Experiment Upgrade (NSTX-U) at the U.S. Department of Energy's (DOE) Princeton Plasma Laboratory (PPPL), but have been rare in the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego. Understanding why some tokamaks chirp and some do not is important so that researchers can predict and eventually learn to avoid such chirping in the ITER tokamak, the international reactor that is being built in the south of France to demonstrate the practicality of fusion energy.

In a like ITER, produce "fast ions" - highly energetic atomic nuclei that scientists rely on to maintain the high temperatures needed to keep the plasma hot. Such ions are like a fast that, under certain conditions, can excite waves called "Alfvén waves" in the hot plasma—much like the musical notes produced by blowing in a wind instrument. If the fast ion wind is strong enough the Alfvén waves begin to chirp, which will cause loss of energy, reducing the plasma temperature and fusion power output.

Conditions that lead to chirping

Scientists led by PPPL researchers have now modeled the plasma conditions that give rise to chirping and predict when it will occur. The computer model, successfully tested on the DIII-D tokamak, describes the impact of turbulence—the random fluctuation of plasma that can lead to heat and particle loss—on the fast ions. The model shows that the turbulence in the plasma helps to break up or scatter the fast ion wind. If the scattering is strong enough the fast ions no longer have the strength to cause Alfvén wave chirping and the loss of heat from the plasma can be reduced.

Until recently, finding direct evidence for the role of turbulence in affecting the strength of the fast ion wind and its role in chirping has been challenging. Recent DIII-D experiments have now revealed the intimate connection between turbulence levels and the chirping of the plasma.

In these experiments, the fast ion wind produced a single Alfvén note in the plasma, much like a single note in a wind instrument. Then, when the plasma spontaneously transitions into a new improved state of confinement with low turbulence levels, the Alfvén note begins to chirp rapidly.

This onset of chirping is clearly tied to the reduction of turbulence, since lower turbulence can no longer scatter the fast ion wind, allowing it to build up sufficiently to drive the Alfvén waves harder and cause them to begin chirping. "The coherent motion of fast ion bunches when the turbulence decreases gives rise to chirping and the leakage and heat associated with chirping," said Vinícius Duarte, a PPPL associate research physicist and former visiting scientist from the University of São Paulo, Brazil, who is lead author of a paper describing the findings in Physics of Plasmas and featured as a "Scilight"—a science highlight—by the American Institute of Physics.

Why some plasmas chirp

The theory developed by Duarte also indicates why some plasmas chirp and some do not. The explanation is that is much less effective in scattering the fast ion wind in some devices compared with others. The next step will be to use this knowledge to design methods to prevent chirping in present experiments, and to use such methods in the design of future fusion reactors such as ITER.

Explore further: Drifting and bouncing particles can maintain stability in fusion plasmas

More information: V. N. Duarte et al, Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks, Physics of Plasmas (2017). DOI: 10.1063/1.5007811

Related Stories

Recommended for you

New study explores cell mechanics at work

June 19, 2018

It's a remarkable choreography. In each of our bodies, more than 37 trillion cells tightly coordinate with other cells to organize into the numerous tissues and organs that make us tick.

The secret to measuring the energy of an antineutrino

June 18, 2018

Scientists study tiny particles called neutrinos to learn about how our universe evolved. These particles, well-known for being tough to detect, could tell the story of how matter won out over antimatter a fraction of a second ...

New form of matter may lie just beyond the periodic table

June 15, 2018

Currently, the heaviest element on the periodic table is oganesson, which has an atomic mass of 294 and was officially named in 2016. Like every element on the periodic table, nearly all of oganesson's mass comes from protons ...

A new experiment to understand dark matter

June 15, 2018

Is dark matter a source of a yet unknown force in addition to gravity? The mysterious dark matter is little understood and trying to understand its properties is an important challenge in modern physics and astrophysics. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.