Self-assembling peptides and the fight against obesity and diabetes

February 23, 2018 by Justine Bashford, University of Cambridge
Self-assembling peptides and the fight against obesity and diabetes
Fibrils of the peptide hormone Oxyntomodulin, with diameters ranging from ~6 to 40 nm. Credit: S. Kinna

A collaboration between the Department's Nanoscience Centre and MedImmune is taking great strides towards safer and more effective treatment of type 2 diabetes and obesity.

The Cambridge chemical engineers have been studying oxyntomodulin, a human peptide, which has the potential to be a safe and efficient form of treatment for both type 2 diabetes and obesity. One of the advantages of the new drug is that, unlike other treatments for type 2 diabetes, it will not cause the patient to gain weight – in fact, quite the opposite.

"There is evidence that oxyntomodulin both reduces appetite and causes a slight raising of body temperature and increase of the heart rate, which will help with weight loss," says Sonja Kinna, a final-year Ph.D. student, supervised by Professor Sir Mark Welland, who is investigating peptide self-assembly as a long-term drug formulation. "In addition to treating diabetes, we see it as a potential weapon to fight obesity."

Sonja and the team have been examining the structural properties of the peptide, which can be stored in a fibrillar (or linear) structure. This structure is inert, but disassembles into a soluble state on being injected under the skin, triggering the release of insulin in the body.

The traditional treatment of type 2 diabetes involves injecting insulin directly into the patient. If too much insulin is applied, the patient can develop hypoglycaemia, but oxyntomodulin eliminates that risk by causing the patient's body to produce its own insulin and balancing .

"We know peptides are a very safe and effective form of treatment," says Sonja, "but the problem is that the body reacts to them as it would to proteins, treating them as food and therefore breaking them down. That's why the ability to use oxyntomodulin's fibrillated form is so important. We can use it as a depot from which the active peptide diffuses into the bloodstream over an extended period."

Slow release from self-assembled structures creates a sustained action that circumvents the short half-life of peptides. This means the effect of the drug may last in humans for several days or even weeks. Although the drug is potentially effective in its free form, it would have to be administered frequently, perhaps as often as every four hours.

Self-assembling peptides and the fight against obesity and diabetes
Sonja at work in the lab. Credit: Sonja Kinna

The team's paper, 'Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly', won the Medimmune 2017 Global Excellence Award for the best publication of the year. The award recognises exceptional contributions to advance innovative science and deliver tremendous value to the MedImmune organisation.

"The best thing about this project has been the collaboration with MedImmune," says Sonja. "It's great because we [at Cambridge] study the structure of the peptides at a nanoscale, whereas the biologists from MedImmune look at the risk factors involved from an industry point of view. Together it works very well."

The partnership is proving beneficial to both the University and MedImmune, and is potentially life-changing for millions.

"This work demonstrates how University research with a commercial partner can innovate medicine," says Professor Sir Mark Welland. "Our years of research on how proteins and can form nanostructures, has allowed us to take a potential medicine and redesign its delivery so as to make it far more effective."

The Cambridge team uses to track signals and create images of the fibrils, which cannot be seen at all, even using the most powerful of optical microscopes. They also investigate the kinetics and thermodynamics of fibrillation and peptide release to better understand how they operate under various conditions.

There is, of course, much work to be done before any drug could appear on the market, and it must be carried out under very precise conditions. It is vital work, however. Not only does this study hold hope for better treatment for those suffering diabetes, but it also has implications for understanding diseases such as Parkinson's Disease, which are caused when proteins fibrillate irreversibly.

"It's very exciting," says Sonja. "There is so much potential in this work, not only for medicine design and delivery, but also for understanding the development of diseases that are currently incurable."

Explore further: Scientists pursue a diabetes drug that also fights obesity

More information: Myriam M. Ouberai et al. Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly, Nature Communications (2017). DOI: 10.1038/s41467-017-01114-1

Related Stories

Scientists discover a new way to treat type 2 diabetes

July 21, 2017

Medication currently being used to treat obesity is also proving to have significant health benefits for patients with type 2 diabetes. A new study published today in Molecular Metabolism explains how this therapeutic benefit ...

Recommended for you

Engineers repurpose wasp venom as an antibiotic drug

December 7, 2018

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

Researchers probe hydrogen bonds using new technique

December 7, 2018

Researchers at Carnegie Mellon University have used nuclear resonance vibrational spectroscopy to probe the hydrogen bonds that modulate the chemical reactivity of enzymes, catalysts and biomimetic complexes. The technique ...

Are amorphous solids elastic or plastic?

December 7, 2018

In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration ...

Molecular insights into spider silk

December 7, 2018

Spider silk is one of the toughest fibres in nature and has astounding properties. Scientists from the University of Würzburg discovered new molecular details of self-assembly of a spider silk fibre protein.

Copycat cells command new powers of communication

December 7, 2018

From kryptonite for Superman to plant toxins for poison ivy, chemical reactions within the body's cells can be transformative. And, when it comes to transmuting cells, UC San Diego researchers are becoming superhero-like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.