Mutation in single rice gene cancels interspecific hybrid sterility

February 12, 2018, Hokkaido University
Mutation in single rice gene cancels interspecific hybrid sterility
Asian species (Oryza sativa, top), African species (O. glaberrima, bottom), and their hybrid (middle). The hybrid has husks but does not yield seeds. Credit: Koide Y., et al. Proceedings of National Academy of Sciences, February 12, 2018.

Scientists successfully employed mutagenesis to identify the gene that causes hybrid sterility in rice, which is a major reproductive barrier between species.

Their success is expected to help elucidate the genetic basis of interspecific hybrid , which is important not only for understanding the evolutionary biology of speciation, but also for improving crops for food production.

There are only two cultured rice species: an Asian one (Oryza sativa) and an African one (O. glaberrima). The African species is tolerant to various abiotic and biotic stresses such as high temperature, providing a valuable source of that could be useful in rice production. However, the interspecific reproductive barrier stands in the way of using the African species in breeding programs with the Asian species. Plants obtained from hybridizing the two species yield almost no seeds when they are cultivated. This is known as hybrid sterility.

To identify the cause of this infertility, Assistant Professor Yohei Koide and Associate Professor Akira Kanazawa of Hokkaido University along with their collaborators Senior Researcher Yoshimichi Fukuta from JIRCAS and Professor Yutaka Okumoto from Kyoto University focused on the S1 gene locus, which is known to be involved in hybrid sterility. The team created numerous hybrid seeds heterozygous for the S1 locus, which were then subjected to heavy-ion beam irradiation to induce mutations. The irradiation experiments were conducted at RIKEN.

While screening for mutants, they found plants that yielded seeds, thus fertile, despite being heterozygous for the S1 locus. Subsequent gene analysis of the S1 locus found a deletion in the peptidase-coding gene called SSP. When the team brought the intact SSP into the Asian species by transformation experiments and crossed the transformant with the mutant, it regained hybrid sterility, showing SSP is causative. Interestingly, the transformation alone did not show sterility, suggesting that SSP is indispensable but not sufficient for hybrid sterility.

The team then researched the evolutionary pathways of SSP and found that the gene is present only in the African species and some other wild , not in the Asian one. This signifies the gene was acquired or lost in certain evolutionary pathways and maintained interspecific boundaries.

"Our study shows the interspecific reproductive barrier can be overcome by a disruption of a single gene. Further research could help improve breeding programs and enhance rice yields to address food shortages in growing populations," says Yohei Koide.

Explore further: Researchers identify sterility genes in hybrid rice

More information: Yohei Koide el al., "Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1711656115

Related Stories

Researchers identify sterility genes in hybrid rice

September 14, 2012

(Phys.org)—Hybrids of many plant and animal species and subspecies are sterile, and a group of researchers in China have now identified the genes that operate to make crossbred rice sterile.

Hybridization can give rise to different genome combinations

January 18, 2018

Researchers have for the first time determined that hybridization between two bird species can give rise to several novel and fully functional hybrid genomic combinations. This could potentially be because hybrid species ...

Recommended for you

Built-in sound amplifier helps male mosquitoes find females

September 25, 2018

The ears of male mosquitoes amplify the sound of an approaching female using a self-generated phantom tone that mimics the female's wingbeats, which increases the ear's acoustic input by a factor of up to 45,000, finds a ...

Team discovers new species of dazzling, neon-colored fish

September 25, 2018

On a recent expedition to the remote Brazilian archipelago of St. Paul's Rocks, a new species of reef fish—striped a vivid pink and yellow—enchanted its diving discoverers from the California Academy of Sciences. First ...

Genome duplication drives evolution of species

September 25, 2018

Many wild and cultivated plants arise through the combination of two species. The genome of these so-called polyploid species often consists of a quadruple set of chromosomes—a double set for each parental species—and ...

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.