Interference as a new method for cooling quantum devices

February 9, 2018, Institute of Science and Technology Austria
A mechanical system is coupled to two electromagnetic cavities and a heat bath, is proposed as a realization. In this model, the two systems are also connected to their own heat baths. Credit: Shabir Barzanjeh, André Xuereb & Matteo Aquilina

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Their study has been published in Physical Review Letters.

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their size makes them particularly susceptible to temperature increases from the thermal noise in the surrounding environment and that caused by other components nearby. Dr Shabir Barzanjeh, a postdoc at the Institute of Science and Technology Austria (IST Austria), together with Dr André Xuereb from the University of Malta and Matteo Aquilina from the National Aerospace Centre in Malta has proposed a novel method to keep quantum devices cool. Their theoretical approach relies on quantum interference.

Normally, if a hotter object is placed next to a cooler one, the heat can only flow from the hotter object to the cooler one. Therefore, cooling an object that is already cooler than its surroundings requires energy. A new method for cooling down the elements of quantum devices such as qubits, the tiny building blocks of quantum computers, was now theoretically proven to work by a group of physicists.

"Essentially, the device we are proposing works like a fridge. But here, we are using a quantum mechanical principle to realize it," explains Shabir Barzanjeh, the lead author of the study and postdoc in the research group of Professor Johannes Fink. In their paper, they studied how thermal noise flows through and they devised a method that can prevent the heat flow to warm up the sensitive quantum . They used a heat sink connected to both devices, showing that it is possible to control its such that it cancels the coming from the warm object directly to the cool one via special interference.

"So far, researchers have focused on controlling the signal, but here, we study the noise. This is quite different, because a signal is coherent, and the noise isn't." Concerning the practical implementation of the mechanism that adds the phase shift to the , Shabir Barzanjeh has some ideas, including a mechanical object that vibrates, or radiation pressure to control the oscillation. "Now it is the time for experimentalists to verify the theory," he says.

Explore further: Essential quantum computer component downsized by two orders of magnitude

More information: Shabir Barzanjeh et al, Manipulating the Flow of Thermal Noise in Quantum Devices, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.060601

Related Stories

Quantum 'hack' to unleash computing power

February 1, 2018

Physicists at the University of Sydney have found a 'quantum hack' that should allow for enormous efficiency gains in quantum computing technologies.

Researchers develop data bus for quantum computer

November 6, 2017

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass ...

What's the noise eating quantum bits?

January 8, 2018

Super powerful quantum computing relies on quantum bits, aka qubits, which are the equivalent of the classical bits used in today's computers. SQUIDs are being investigated for the development of qubits. However, system noise ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.