Imec pushes the limits of EUV lithography single exposure

February 26, 2018, IMEC
Imec pushes the limits of EUV lithography single exposure
EUV single patterning of (left) the N5 32nm metal-2 layer, (middle) 32nm pitch dense lines, and (right) 40nm hexagonal contact holes and pillars. Credit: IMEC

Imec, the world-leading research and innovation hub in nanoelectronics and digital technology, continues to advance the readiness of EUV lithography with particular focus on EUV single exposure of Logic N5 metal layers, and of aggressive dense hole arrays. Imec's approach to enable EUV single patterning at these dimensions is based on the co-optimization of various lithography enablers, including materials, metrology, design rules, post processing and a fundamental understanding of critical EUV processes. The results, that will be presented in multiple papers at this week's 2018 SPIE Advanced Lithography Conference, are aimed at significantly impacting the technology roadmap and wafer cost of near-term technology nodes for logic and memory.

With the industry making significant improvements in EUV infrastructure readiness, first insertion of EUV lithography in high-volume manufacturing is expected in the critical back-end-of-line metal and via layers of the foundry N7 Logic technology node, with metal pitches in the range of 36–40nm. Imec's research focuses on the next node (32nm pitch and below), where various patterning approaches are being considered. These approaches vary considerably in terms of complexity, wafer cost, and time to yield, and include variations of EUV multipatterning, hybrid EUV and immersion multipatterning, and EUV single expose. At SPIE last year, presented many advances in hybrid multipatterning and revealed various challenges of the more cost-effective EUV single exposure solution. This year, imec and its partners show considerable progress towards enabling these dimensions with EUV single exposure.

Imec's path comprises a co-optimization of various lithography enablers, including resist materials, stack and post processing, metrology, computational litho and design-technology co-optimization, and a fundamental understanding of EUV resist reaction mechanisms and of stochastic effects. Based on this comprehensive approach, imec has demonstrated promising advances including initial electrical results, on EUV single exposure focusing on two primary use cases: logic N5 32nm pitch metal-2 layer and 36nm pitch contact hole arrays.

Working with its many materials partners, imec assessed different resist materials strategies, including chemically amplified resists, metal-containing resists and sensitizer-based resists. Particular attention was paid to the resist roughness, and to nano-failures such as nanobridges, broken lines or missing contacts that are induced by the stochastic EUV patterning regime. These stochastic failures are currently limiting the minimum dimensions for single expose EUV. Based on this work, imec delved into the fundemental understanding of stochastics and identified the primary dependencies influencing failures. Additionally, various metrology techniques and hybrid strategies have been employed to ensure an accurate picture of the reality of stochastics. Imec will report on this collective work, demonstrating the performance of various state-of-the-art line-space and contact hole resists.

As resist materials advances alone will likely be inssufient to meet the requirements, imec has also focused on co-optimizing the photomask, film stack, EUV exposures and etch towards an integrated patterning flow to achieve full patterning of the structures. This was done using computational lithography techniques such as optical proximity correction and source mask optimization, complemented by design-technology co-optimization to reduce standard library cell areas. Finally, etch-based post-processing techniques aimed at smoothing the images after the lithography steps yields encouraging results for dense features. Co-optimization of these mulitple knobs is key to achieving optimized patterning and edge placement error control.

Greg McIntyre, Director of advanced patterning at imec summarizes:

"We feel these are very promising advances towards enabling EUV to reliably achieve single patterning at these aggressive dimensions. This would significantly impact the cost effectiveness of patterning solutions for the next few technology nodes."

Explore further: Innovative scatterometry approach for self-aligned quadruple patterning (SAQP) process control

Related Stories

Breakthrough results on directed self-assembly reported

February 19, 2015

At next week's SPIE advanced lithography conference, to be held in San Jose, Calif., Feb. 22-26, imec will present breakthrough results on Directed Self-Assembly (DSA) process development. Together with semiconductor equipment ...

IMEC reports major progress in EUV

July 14, 2008

IMEC reports functional 0.186µm2 32nm SRAM cells made with FinFETs from which the contact layer was successfully printed using ASML’s full field extreme ultraviolet (EUV) Alpha Demo Tool (ADT). Applied Materials, using ...

Recommended for you

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.