Image: Hypervelocity impact testing

February 22, 2018, European Space Agency
Credit: Fraunhofer Institute for High-Speed Dynamics

What looks like a mushroom cloud turned sideways is actually the instant an 2.8 mm-diameter aluminium bullet moving at 7 km/s pierces a spacecraft shield, captured by a high-speed camera.

"We used a gas gun at Germany's Fraunhofer Institute for High-Speed Dynamics to test a novel material being considered for shielding spacecraft against ," explains ESA researcher Benoit Bonvoisin.

"Our project has been looking into various kinds of 'fibre metal laminates' produced for us by GTM Structures, which are several thin metal layers bonded together with composite material."

Growing levels of pose increasing risks to all kinds of Earth-orbiting missions, adds engineer Andreas Tesch: "Such debris can be very damaging because of their high impact speeds of multiple kilometres per second.

"Larger pieces of debris can at least be tracked so that large spacecraft such as the International Space Station can move out of the way, but pieces smaller than 1 cm are hard to spot using radar – and smaller satellites have in general fewer opportunities to avoid collision."

In some orbital regions small natural meteoroids can also pose a threat, in particular during intense seasonal meteoroid streams such as the Leonids.

To avoid damage from whatever source, protection is needed against small , typically consisting of one or more shields. Often used is the 'Whipple shield' – originally devised to guard against comet dust – with multiple layers separated by 10–30 cm.

The project, supported through ESA's General Support Technology Programme, which prepares promising technology for spaceflight, looked at the efficiency of fibre metal laminates compared to current aluminium shields.

This still from the video shows the point after which the solid aluminium bullet has broken apart into a cloud of fragments and vapour, which becomes easier for the following layers to capture or deflect.

"The next step would be to perform in-orbit demonstration in a CubeSat, to assess the efficiency of these FMLs in the orbital environment," concludes Benoit.

Explore further: Sensor to monitor orbital debris outside space station

Related Stories

Sensor to monitor orbital debris outside space station

January 2, 2018

The International Space Station isn't the only spacecraft orbiting the Earth. In fact, it is accompanied by the Hubble Space Telescope, satellites within the Earth Observing System, and more than 1,000 other operational spacecraft ...

Image: ATV shielding after impact test

June 25, 2014

An exit hole through Kevlar–Nextel fabric after hypervelocity testing of the multilayer shielding for ESA's ATV space freighter, simulating an impact by space debris. The good news is that testing confirms the spacecraft's ...

Image: Spotting orbital debris from the ground

April 6, 2017

On 30 March, NASA astronauts Shane Kimbrough and Peggy Whitson ventured outside the International Space Station on a seven-hour spacewalk. The duo's work included installing four thermal shields on the US Tranquility module, ...

ESA image: Impact chip

May 12, 2016

The European-built Cupola was added to the International Space Station in 2010 and continues to provide the best room with a view anywhere.

Recommended for you

Long lost Galileo letter found at Royal Society library

September 26, 2018

Nature journalist Alison Abbott has published a News and Comment piece in the journal detailing the finding of a letter in a Royal Society library purported to have been written by famed early scientist Galileo Galilei. The ...

Hyper Suprime-Cam survey maps dark matter in the universe

September 26, 2018

Today, an international group of researchers, including Carnegie Mellon University's Rachel Mandelbaum, released the deepest wide field map of the three-dimensional distribution of matter in the universe ever made and increased ...

Software finds the best way to stick a Mars landing

September 26, 2018

Selecting a landing site for a rover headed to Mars is a lengthy process that normally involves large committees of scientists and engineers. These committees typically spend several years weighing a mission's science objectives ...

Tracking the interstellar object 'Oumuamua to its home

September 25, 2018

A team of astronomers led by Coryn Bailer-Jones of the Max Planck Institute for Astronomy has tracked the interstellar object 'Oumuamua to several possible home stars. The object was discovered in late 2017 – this was the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.