Fearmongering is scary, not genetic technologies themselves

February 23, 2018 by Isobel Ronai And Kate Lynch, The Conversation
CRISPR provides a very targeted tool for editing DNA in plants. Credit: www.shutterstock.com

Australia's gene technology regulations have not been revised since 2001 - despite many game-changing advances in genetic technologies over the past 17 years.

A review of the regulations by the Office of the Gene Technology Regulator (a Federal government body) involved a public call for submissions and has also triggered some fears about what changes are to come. Will it mean genetically modified organisms (GMOs) – plants, animals or even humans – will not be regulated?

We argue that the proposed changes to the regulations will actually involve more oversight of genetic techniques, including the poster-child of new approaches: CRISPR.

CRISPR (or more precisely, CRISPR-Cas) is a molecular that has been developed from a naturally occurring mechanism in bacteria, and is used to alter DNA.

Prior to the proposed amendments by the Office of the Gene Technology Regulator, the regulation of CRISPR-Cas was a bit ambiguous. Rather than opening the door for genetic editing to become more widespread, the proposed changes more tightly regulate the use of CRISPR-Cas technology.

How CRISPR works

The CRISPR-Cas technique is prized by researchers because it is an efficient and precise way to alter DNA (as well as other molecules such as RNA).

There are two main applications of CRISPR-Cas: to increase genetic variation (that is, slight changes in the DNA sequence), and to edit the DNA (an approach similar to "cutting and pasting", where known bits of DNA are taken out and alternatives added back in).

Traditionally, genetic variation arose naturally and individuals with desirable traits were selectively bred by humans. We have been doing this for thousands of years, and selective breeding is responsible for a lot of the food that we eat today. About a century ago, X-rays and chemicals started to be used to increase the amount of of organisms (typically plants) which can be selectively bred. This has generated more than 3,000 horticultural plant varieties that we consume today, none of which are classified as GMOs.

CRISPR-Cas can be used in a similar way to X-ray and chemical methods, but with an advantage: it can target specific sequences of the DNA, minimising unwanted, bystander effects in other parts of the DNA. In the proposed regulation changes, CRISPR-Cas-induced variations of this kind would be classified in the same way as other technologies achieving the same outcome – they are not GMOs.

As well as inducing variation, CRISPR-Cas is best known as an "editor" which can cut and paste particular bits of DNA. When DNA is added to an organism, they are classified as GMOs, and would still be according to the proposed regulation changes.

When CRISPR-Cas technology is used for editing, it can also be used to create changes in the DNA of an organism that will then spread in subsequent generations—this is referred to as a "gene drive". But CRISPR-Cas is not the only way to achieve this, and the proposed changes increase the regulations for the use of all kinds of gene drives.


Columnist Elizabeth Farrelly recently argued that proposed updates to Gene Technology Regulations entail the "deregulation" and "declassification" of CRISPR-Cas such that it would "no longer count as genetic modification" in Australia. This is not the case.

The column also appears to argue that changes to the legislation mean that designer babies are both technically possible and imminent.

But in Australia, both the current (2001) and proposed changes to the regulations by the Office of the Gene Technology Regulator do not cover the use of CRISPR-Cas technology in humans—only other organisms that are not destined for human food. Further, the 2015 "International Summit on Human Gene Editing" put a moratorium on gene editing in viable human embryos.

Worries about designer babies stemming from the current and proposed genetic technology regulations are not substantiated.

Focus on outcomes, not process

The lesson here is not that we should blindly trust scientists and regulators when it comes to new technology. We agree that emerging technologies can pose risks.

Rather, the take-home message is that technological regulation needs to focus on outcomes of the technology, not the technology itself.

Let's consider another technology: 3-D printing.

Advances in 3-D printing means that the opportunities for creating new products are endless. You can print a house, a car, a prosthetic limb - and also a weapon. Does this make 3-D printing something to be afraid of?

We think not. 3-D printing can have many uses, malevolent or life-transforming. Scaremongering about 3-D printing technology, rather than considering the uses of the technology, is a misguided approach to regulation.

A 3-D-printed cast should be regulated differently to a 3-D-printed gun. And this kind of regulation is exactly what the proposed updates to the Gene Technology Regulations hopes to achieve.

What the updates do address is a change from a process based assessment of technology to an outcome based one. In the same way that we might not want 3-D printing banned in Australia, some on the various outcomes arising from new genetic technologies are necessary.

Explore further: Equipping CRISPR/Cas9 with an enzyme that controls translation of genetic information into protein

Related Stories

Alternative CRISPR system is less specific, more robust

September 13, 2017

The genetic tool adept at line-by-line gene editing, CRISPR, has revolutionized the ability of scientists to manipulate genes for experimental, and perhaps someday therapeutic, purposes. But it comes in several varieties. ...

Video: Genetically modified humans? CRISPR/Cas 9 explained

September 6, 2016

Thanks to a new, cheap and accurate DNA-editing technique called CRISPR-Cas9, targeted genetic modification in humans is no longer just the realm of science fiction. Both the British and U.S. governments recently gave scientists ...

A delivery platform for gene-editing technology

February 21, 2018

A new delivery system for introducing gene-editing technology into cells could help safely and efficiently correct disease-causing mutations in patients. The system, developed by KAUST scientists, is the first to use sponge-like ...

Scientists use CRISPR technology to change flower colour

September 5, 2017

In a world-first, Japanese scientists have used the revolutionary CRISPR, or CRISPR/Cas9, genome- editing tool to change flower colour in an ornamental plant. Researchers from the University of Tsukuba, the National Agriculture ...

Recommended for you

Drawing inspiration from plants and animals to restore tissue

March 19, 2018

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering have developed new wound dressings that dramatically accelerate healing ...

Researchers measure gene activity in single cells

March 16, 2018

For biologists, a single cell is a world of its own: It can form a harmonious part of a tissue, or go rogue and take on a diseased state, like cancer. But biologists have long struggled to identify and track the many different ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.