Researchers report the creation of Rydberg polarons in a Bose gas

February 26, 2018, Vienna University of Technology
Electron (blue) orbits the nucleus (red) -- and its orbit encloses many other atoms of the Bose-Einstein-condensate (green). Credit: TU Wien

What is inside an atom between the nucleus and the electron? Usually there is nothing, but why could there not be other particles too? If the electron orbits the nucleus at a great distance, there is plenty of space in between for other atoms. A "giant atom" could be created, filled with ordinary atoms. All these atoms form a weak bond, creating a new, exotic state of matter at cold temperatures, referred to as Rydberg polarons.

A team of researchers has now presented this state of matter in the journal Physical Review Letters. The theoretical work was done at TU Wien (Vienna) and Harvard University, the experiment was performed at Rice University in Houston (Texas).

Two special fields of atomic physics, which can only be studied in extreme conditions, have been combined in this research project: Bose-Einstein condensates and Rydberg atoms. A Bose-Einstein condensate is a state of matter created by atoms at ultracold temperatures, close to absolute zero. Rydberg atoms are those in which one single electron is lifted into a highly excited state and orbits the nucleus at a very large distance.

"The average distance between the electron and its nucleus can be as large as several hundred nanometres—that is more than a thousand times the radius of a hydrogen atom," says Professor Joachim Burgdörfer. Together with Prof. Shuhei Yoshida (both TU Wien, Vienna), he has been studying the properties of such Rydberg atoms for years.

First, a Bose-Einstein condensate was created with strontium atoms. Using a laser, energy was transferred to one of these atoms, turning it into a Rydberg atom with a huge atomic radius. The radius of the orbit in which the electron moves around the nucleus is much larger than the typical distance between two atoms in the condensate. Therefore, the electron orbits its own atomic , while numerous other atoms lie inside its orbit, too. Depending on the radius of the Rydberg atom and the density of the Bose-Einstein condensate, as many as 170 additional strontium atoms may be enclosed by the huge electronic orbit.

These atoms have a minimal influence on the Rydberg electron's path. "The atoms do not carry any electric charge, therefore, they only exert a minimal force on the electron," says Shuhei Yoshida. But to a very small degree, the electron is still influenced by the presence of the neutral atoms along its path. It is scattered at the neutral atoms, but only very slightly, without ever leaving its orbit. The quantum physics of slow electrons permits this kind of scattering, which does not transfer the electron into a different state.

As computer simulations show, this comparatively weak kind of interaction decreases the total energy of the system, and a bond between the Rydberg atom and the other atoms inside the electronic orbit is created. "It is a highly unusual situation," says Shuhei Yoshida. "Normally, we are dealing with charged nuclei binding electrons around them. Here, we have an electron binding ."

This bond is much weaker than the bond between atoms in a crystal. Therefore, this exotic state of matter, called Rydberg polarons, can only be detected at very low temperatures. If the particles were moving any faster, the bond would break. "For us, this new, weakly bound state of matter is an exciting new possibility of investigating the physics of ultracold ," says Joachim Burgdörfer. "That way one can probe the properties of a Bose-Einstein condensate on very small scales with very high precision."

Explore further: Weak atomic bond, theorized 14 years ago, observed for first time

More information: F. Camargo et al, Creation of Rydberg Polarons in a Bose Gas, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.083401

Related Stories

Giant atom eats quantum gas

October 31, 2013

A team of experimental and theoretical physicists from the University of Stuttgart studied a single micrometer sized atom. This atom contains tens of thousands of normal atoms in its electron orbital. These results have been ...

Simple model explains crystal formation of exceptional atoms

July 23, 2015

Scientists from the FOM Foundation, Eindhoven University of Technology and the University of Buenos Aires have discovered why fluctuations in the number of Rydberg atoms that forms in an ultracold gas decreases as the interaction ...

Toward a continuous atom laser

December 5, 2017

Ever since its invention, the laser has been an invaluable tool in physics. It is expected that an atom laser - with the light waves replaced by the quantum waves of atoms - could have similarly important applications, for ...

Scientists discover giant Rydberg atom molecules

June 24, 2009

A group of University of Oklahoma researchers led by Dr. James P. Shaffer, Homer L. Dodge Department of Physics and Astronomy, have discovered giant Rydberg molecules with a bond as large as a red blood cell. Determining ...

Scientists Make First Observation of Unique Rydberg Molecule

April 28, 2009

(PhysOrg.com) -- When Enrico Fermi investigated the Rydberg atom in the '30s, he never imagined that the giant atoms could form molecules. Later, in the '70s and '80s, theoretical physicist Chris Greene predicted that Rydberg ...

Recommended for you

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

The big problem of small data: A new approach

October 18, 2018

Big Data is all the rage today, but Small Data matters too! Drawing reliable conclusions from small datasets, like those from clinical trials for rare diseases or in studies of endangered species, remains one of the trickiest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.