Collimators—the LHC's bodyguards

February 22, 2018 by Iva Raynova, CERN
Installation of a collimator in the LHC. Collimators protect the sensitive equipment from escaping particles. Credit: Maximilien Brice, Julien Ordan/CERN

The performance of the LHC relies on accelerating and colliding beams made of tiny particles with unprecedented intensities. If even a small fraction of the circulating particles deviates from the precisely set trajectory, it can quench a super-conducting LHC magnet or even destroy parts of the accelerator. The energy in the two LHC beams is sufficient to melt almost one tonne of copper.

This is why the LHC shows its teeth every time particles misbehave. These "teeth" are part of special devices around the LHC, called collimators. Their jaws – moveable blocks of robust materials – close around the to clean it of stray particles before they come close to the collision regions. The materials the jaws are made of can withstand extreme conditions of temperature and pressure, as well as high levels of radiation.

More than a hundred of these bodyguards are placed around the LHC. They are also installed on each side of the LHC experiments to absorb the stray before they come close to the collision regions.

With the expected increase in the number of particle collisions in the High-Luminosity LHC, the beam intensity will be much higher. New collimators are being developed by CERN's Engineering department to meet the beam-cleaning requirements of the future project. Some of the recent innovations in the LHC collimation system include a wire and a crystal collimator.

Explore further: Preparations for a new season of physics at the Large Hadron Collider

Related Stories

Colliding protons head-on

December 8, 2017

They won't pinch you and you won't find them on the beach. The name of the new radio-frequency crab cavities has nothing to do with their appearance and is merely illustrative of the effect they will have on circulating proton ...

First images of LHC collisions at 13 TeV

May 21, 2015

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors from particles ...

Return of the LHC – season 2 continues

March 30, 2016

On Friday, the Large Hadron Collider (LHC) opened its doors to allow particles to travel around the ring for the first time since the year-end technical stop (YETS) began in December 2015. At 10.30 am, a first bunch was circulating ...

CERN celebrates completion of Linac 4

May 9, 2017

At a ceremony today, CERN inaugurated its linear accelerator, Linac 4, the newest accelerator acquisition since the Large Hadron Collider (LHC). Linac 4 is due to feed the CERN accelerator complex with particle beams of higher ...

The LHC has restarted for its 2017 run

May 1, 2017

Today, the LHC once again began circulating beams of protons, for the first time this year. This follows a 17-week-long extended technical stop.

Recommended for you

Designing a new material for improved ultrasound

March 22, 2018

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international ...

Weird superconductor leads double life

March 21, 2018

Until about 50 years ago, all known superconductors were metals. This made sense, because metals have the largest number of loosely bound "carrier" electrons that are free to pair up and flow as electrical current with no ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.