Radiation therapy algorithm could reduce side effects, maintain effect against tumors

January 5, 2018, North Carolina State University

Researchers at North Carolina State University have developed a mathematical model for computing radiation therapy treatments that could substantially reduce patient side effects while delivering the same results as conventional radiation therapy.

Cancer patients who receive radiotherapy to destroy their tumors are given a total dose of split into multiple equal treatments delivered over days or weeks. This is due to something called the fractionation : radiation-induced cell damage is lower if the same physical dose is delivered in multiple fractions, because it allows healthy cells to recover between treatments. Current clinical protocols stipulate that patients receive the same dose in each session, every day.

But do the doses have to be the same each day? "Different doses, carefully planned to minimize side effects, can be just as effective," says Dávid Papp, assistant professor of mathematics at NC State University. "However, the extent of this benefit has never been assessed. The algorithms we use now to determine the best personalized treatments don't work when computing treatments with different dose distributions in different fractions."

Papp set out to develop and test a so-called "spatiotemporal fractionation" approach that would reduce the to healthy tissue while maintaining effectiveness against the . In a proof-of-concept study, Papp tested the plan against model slices of five different liver tumors, each representing a unique tumor size or location to allow comparisons with actual clinical treatments.

"We wanted to see what the quantitative benefits of such a new protocol would be," says Papp. "How much can you reduce the radiation's effect on the liver while making sure that the tumor receives a consistent and effective dose? A reduction of 20 percent would reduce side effects enough to warrant a change in everyday clinical practice."

Papp's model reduced the liver dose by 13 to 35 percent without compromising other clinical goals. He has begun work on refining the model to make it more robust, with a view toward in vivo testing.

"Conventional radiation treatments don't necessarily achieve maximum benefit," Papp says. "Our protocol, by delivering a high single-fraction dose to parts of the tumor during each fraction and a consistent lower dose to the liver and other healthy tissue, could reduce patient side effects substantially while maintaining the same effectiveness as conventional treatments."

The research appears in Physics in Medicine and Biology. Papp is corresponding author.

Explore further: First stereotactic radiotherapy system designed for breast cancer receives FDA clearance

More information: Melissa R Gaddy et al, Optimization of spatiotemporally fractionated radiotherapy treatments with bounds on the achievable benefit, Physics in Medicine & Biology (2018). DOI: 10.1088/1361-6560/aa9975

Related Stories

Team improves radiation therapy for head and neck patients

May 31, 2017

Radiation therapy is one of the most common treatments used to fight cancer, with an estimated 500,000 people each year receiving radiation therapy either alone or in combination with other treatments. Patients are often ...

Recommended for you

On the rebound

January 22, 2018

Our bodies have a remarkable ability to heal from broken ankles or dislocated wrists. Now, a new study has shown that some nanoparticles can also "self-heal" after experiencing intense strain, once that strain is removed.

Nanoparticle gel controls twisted light with magnetism

January 22, 2018

"Help me, Obi Wan Kenobi. You're my only hope." For many of those around at the release of Star Wars in 1977, that scene was a first introduction to holograms—a real technology that had been around for roughly 15 years.

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.