Macrophage nanosponges could keep sepsis in check

January 4, 2018, University of California - San Diego

A team of researchers at the University of California San Diego has developed macrophage "nanosponges" that can safely absorb and remove molecules from the bloodstream that are known to trigger sepsis. These macrophage nanosponges, which are nanoparticles cloaked in the cell membranes of macrophages, have so far improved survival rates in mice with sepsis.

This work is one example of the cloaking technology pioneered by the lab of Liangfang Zhang, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering. His group develops new nanomedicine therapies by disguising nanoparticles as the body's own cells. Previous examples include red blood cell nanosponges to combat and prevent MRSA infections;  nanoparticles cloaked in platelet cell membranes to repair wounded blood vessels; and nanofibers cloaked in beta cell membranes that could be used to help diabetes patients produce more insulin.

In the current study, Zhang's lab developed macrophage nanosponges that offer a promising solution for effectively treating and managing sepsis. Zhang's lab collaborated with Victor Nizet, a professor of pediatrics and pharmacy at UC San Diego, whose team helped test the macrophage nanosponges in vivo.

Sepsis occurs when the body launches an uncontrolled immune response to an infection, triggering widespread inflammation that can lead to organ failure, septic shock and even death. The U.S. Centers for Disease Control and Prevention estimate that more than 1.5 million Americans get sepsis and about 250,000 die from this condition each year.

Sepsis is usually treated with antibiotics. But while antibiotics can potentially eliminate sepsis-causing bacteria, they can't keep inflammation in check.

Some sepsis-causing bacteria secrete toxic molecules called endotoxins. Macrophages—white blood cells that play a major role in inflammation—recognize endotoxins as dangerous. In response, macrophages produce inflammation-causing proteins called pro-inflammatory cytokines, which in turn activate other macrophages to produce more cytokines, setting off a dangerous domino effect of inflammation throughout the body.

"To effectively manage sepsis, you need to manage this cytokine storm," said Zhang.

In a paper published in Proceedings of the National Academy of Sciences, Zhang and a team of researchers at UC San Diego showed that macrophage nanosponges can safely neutralize both endotoxins and pro-inflammatory cytokines in the bloodstream.

A wide range of endotoxins and pro-inflammatory cytokines naturally bind to macrophage cell membranes, so these nanosponges serve as universal traps for a broad spectrum of -causing molecules, Zhang explained. "They can work across different bacterial genus, species and strains," he said. And since they are covered in actual macrophage cell membranes, they can pass as the body's own immune cells and circulate the bloodstream without being evicted.

Researchers used from mice to make the nanosponges. They soaked the cells in a solution that made the burst, leaving the membranes behind. The membranes were collected using a centrifuge, then mixed with ball-shaped nanoparticles made of biodegradable polymer. The mixing step spontaneously coated the nanoparticles in macrophage cell membranes. 

The team administered the macrophage nanosponges to a group of mice infected with a lethal dose of E. coli. The treatment kept four out of 10 mice in this group alive, while all mice in the untreated group died. One dose of the macrophage nanosponges significantly reduced the levels of endotoxins and pro-inflammatory cytokines in the treated mice. This prevented systemic inflammation and also reduced the bacterial count in the blood and spleen of these mice.

Zhang is working with biopharmaceutical companies to translate the macrophage nanosponges into clinical use.  Next steps include manufacturing the nanosponges in large scales and conducting large animal trials.

Explore further: Nanosponges lessen severity of streptococcal infections

More information: Soracha Thamphiwatana et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1714267114

Related Stories

Nanosponges lessen severity of streptococcal infections

April 24, 2017

In a new study, researchers show that engineered nanosponges that are encapsulated in the membranes of red blood cells can reduce the severity of infections caused by group A Streptococcus, the bacteria responsible for strep ...

Gel filled with nanosponges cleans up MRSA infections

May 18, 2015

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant ...

Video: Nanosponge decoy fights superbug infections

April 29, 2014

Our first instinct with infection in the body is often to find it and get rid of it! But, engineer Liangfang Zhang had another idea. With support from the National Science Foundation (NSF), Zhang and his team at the University ...

Recommended for you

Water matters to metal nanoparticles

August 14, 2018

When you purchase anything from makeup to paint to sunscreen, chances are it contains engineered nanoparticles. These nanoscale materials have properties that are revolutionizing products—from medicine to agriculture to ...

Controlling nickelate nano-switches with light

August 14, 2018

Dr. Giordano Mattoni, quantum researcher at TU Delft, and his collaborators have shown that the nano-electronic phase transition in a class of materials known as nickelates can be controlled by laser light. Their findings, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.