Researchers develop hybrid meta-biomaterial that can prolong lifespan of hip implants

January 3, 2018, Delft University of Technology
3D printed hip implant developed using the new hybrid meta-biomaterial. Credit: TU Delft

A hybrid meta-biomaterial that promotes bone growth is not something you will find in nature, but it can be created using a 3-D printer and existing biomaterials. TU Delft researchers have developed a meta-implant that combines a conventional meta-biomaterial with an auxetic meta-biomaterial. Unlike natural materials, auxetics have a negative Poisson's ratio—when stretched, they become thicker perpendicular to the applied force. The material may therefore be used in hip implants to ensure their long-term fixation. The TU Delft researchers published their findings in the scientific journal Materials Horizons on 2 January 2018.

Around the year 2020, the number of hip prostheses around the world is expected to rise to 2.5 million a year. Using the current technology, about 10 percent of these implants will no longer be firmly fixated 10 years after surgery. This inspired TU Delft Professor Amir Zadpoor to find a means of preventing loosening. Zadpoor now believes that he has found a solution using an auxetic meta-biomaterial.

Meta-biomaterials are the biomedical variant of so-called metamaterials, materials that display characteristics that are not found in nature. In their publication, Zadpoor and his colleagues outline the immense potential of metamaterials in the development of medical implants. "Auxetic meta-biomaterial, designed using simple geometry and printed in titanium, displays the unique mechanical property of expanding when put under pressure. This makes it ideal for use alongside materials that do the opposite," explains Zadpoor. "When someone with a walks, the prosthesis is subjected to various forces. If too much pressure develops on one side of the prosthesis, it can become detached from the bone, which is extremely undesirable."

Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials (TU Delft) Credit: TU Delft

The researchers believe that a hybrid prosthesis made of meta-biomaterials with a positive Poisson's ratio and those with a negative Poisson's ratio will become much more fixated in the body. "This will significantly improve the chances of onto the hybrid meta-biomaterials, holding the implant much more securely in place." Zadpoor also thinks that he will be able to use this new material in the future to address the most significant cause of implant loosening. "Since there will be fewer unnatural forces at work on the prosthesis, there is a smaller chance of plastic particles wearing off in the hip cup, which can increase the risk of loosening."

Zadpoor's experiment involved a vertical compression on an implant surrounded by bone-like material (special foam with the mechanical properties of bone). The force simulates the stress exerted on an implant in the human body. As a result of this pressure, the new implant expands, resulting in compression in the surrounding bone on both sides (the turquoise colouration seen in the above image). It is exactly this compression that can ensure improved implant fixation. Clinical trials are yet to be conducted. In the years ahead, the primary research question of the Delft group – who will be working in collaboration with researchers from various academic hospitals – concerns how exactly these properties can be used to develop better implants.

TU Delft researchers develop hybrid meta-biomaterial that can prolong lifespan of hip implants. Credit: TU Delft
"Innovation in the field of hip implants is badly needed, and Professor Zadpoor's new method certainly has the potential to prolong the lifespan of implants. A phased introduction starting with 3-D measurements of this implant in patients will be necessary in order to guarantee the safe improvement of quality for patients," says Professor Rob Nelissen, Medical Delta Professor and orthopaedic surgeon at the Leiden University Medical Centre.

The paper, "Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials," was published in the Royal Society of Chemistry's peer-reviewed journal Materials Horizons.

Explore further: Fabricating shape-shifting objects with hobbyist 3-D printers

More information: Helena M. A. Kolken et al, Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials, Materials Horizons (2017). DOI: 10.1039/c7mh00699c

Related Stories

'Origami' lattices with nano-scale surface ornaments

December 1, 2017

Inspired by origami, the Japanese art of paper folding, researchers at TU Delft are developing an alternative to 3-D printing that gives the final products many more functionalities than what is possible with 3-D printing. ...

Simple biomechanical test could aid implant success

October 11, 2017

The quality of the tissue-implant interface is key to the success of implant integration. High-output benchtop screening can help developers in assessing the complex interplay between biomaterials and the body to better prepare ...

New optimized coatings for implants reduce risk of infection

December 18, 2013

Implants are commonly made from metals such as titanium alloys. These materials are being made porous during processing used to prepare them for medical use. Whereas this is important to ensure good contact between the implant ...

Recommended for you

Floodplain forests under threat

March 19, 2019

A team from the Institute of Forest Sciences at the University of Freiburg shows that the extraction of ground water for industry and households is increasingly damaging floodplain forests in Europe given the increasing intensity ...

Scientists discover common blueprint for protein antibiotics

March 19, 2019

A discovery by researchers at the Los Angeles Biomedical Research Institute (LA BioMed) has uncovered a common blueprint for proteins that have antimicrobial properties. This finding opens the door to design and development ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.