Growing up: Researchers create new gel-forming technique that mimics the way living tissues grow

January 4, 2018 by Alexandra George, Carnegie Mellon University Materials Science and Engineering
Growing up: Researchers create new gel-forming technique that mimics the way living tissues grow
Experimental demonstrations of forming a saddle-shaped leaf through oxygen diffusion-mediated differential polymerization of polyacrylamide gels. Credit: K. Jimmy Hsia

While we know what a tree leaf, a flower petal, and a human heart look like, we do not always understand the deeper question of how they grow the way they do—a process known as morphogenesis. Researchers at Carnegie Mellon University and Nanyang Technological University, Singapore (NTU Singapore) have developed a novel technique for producing synthetic gels that may give us a clue.

In nature, organ tissue morphogenesis occurs through the growth of various parts at different rates, often controlled by the concentration of growth factors. A research team at Carnegie Mellon, including K. Jimmy Hsia, Changjin Huang, David Quinn, and Subra Suresh (former president of Carnegie Mellon and president-designate of NTU), utilize oxygen-inhibited polymerization to grow complex 3-D structures of polyacrylamide (PA) gels, mimicking natural processes. They have found a way to control the concentration of oxygen in the growing environment and, with mechanical constraints, enable the gels to self-assemble into complex shapes in a process that may help explain how our own organs and tissues take shape. The team's findings were recently published in the Proceedings of the National Academy of Sciences.

The new technique differs from previous engineering methods, which create 3-D structures by adding or subtracting layers of materials. This technique relies on continuous polymerization of monomers inside the porous hydrogel, similar to the process of enlargement and proliferation of living cells in organic tissues.

Growing up: Researchers create new gel-forming technique that mimics the way living tissues grow
Experimental demonstrations of forming a saddle-shaped leaf through oxygen diffusion-mediated differential polymerization of polyacrylamide gels. Credit: K. Jimmy Hsia

"The technique provides a potentially powerful tool for researchers to study growth phenomena in living systems," said Hsia, a professor of Mechanical Engineering and Biomedical Engineering, and also Vice Provost for International Programs and Strategy at Carnegie Mellon.

Hsia's team is the first to use this process to control the gel's growth and create complex shapes through molecular self-assembly in PA gels.

"With the capability to control the and self-assembly of hydrogels into complex structures," said Suresh, "researchers may one day be able to generate synthetic organs and tissues to replace diseased and damaged biological tissues."

Growing up: Researchers create new gel-forming technique that mimics the way living tissues grow
Creation of a flower pot shaped 3-D structure through molecular self-assembly of soft gels with mechanical constraints. Credit: K. Jimmy Hsia

Researchers can use this process to form different hydrogel 3-D shapes and architectures for engineering, soft robotics, and flexible electronics.

The project was funded by a grant from the National Institute of Health and Carnegie Mellon University. Carnegie Mellon and NTU have filed a patent on this method.

Explore further: Scientists make research hydrogel grow more like biological tissues

More information: Changjin Huang et al, Controlled molecular self-assembly of complex three-dimensional structures in soft materials, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1717912115

Related Stories

Hydrogels provide scaffolding for growth of bone cells

August 17, 2008

Hyaluronic hydrogels developed by Carnegie Mellon University researchers may provide a suitable scaffolding to enable bone regeneration. The hydrogels, created by Newell Washburn, Krzysztof Matyjaszewski and Jeffrey Hollinger, ...

Recommended for you

Organic crystals twist, bend, and heal

June 18, 2018

Crystals are brittle and inelastic? A novel class of smart, bendable crystalline organic materials has challenged this view. Now, scientists have engineered a molecular soft cocrystalline structure that bends and twists reversibly ...

Electrical wire properties of DNA linked to cancer

June 18, 2018

One of the biggest helpers in our bodies' ongoing efforts to prevent DNA mutations—mutations that can lead to cancer—is actually rather tiny. Electrons, as it turns out, can signal proteins that repair DNA to patch up ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.