Nature demonstrates how bacteria degrade lignin and provides better understanding to make biofuels

December 20, 2017, Environmental Molecular Sciences Laboratory
Nature demonstrates how bacteria degrade lignin and provides better understanding to make biofuels
Gene expression of cells grown in lignin and glucose were compared to cells grown in glucose alone at the same time point. Credit: Environmental Molecular Sciences Laboratory

The production of biofuels from plant biomass is a highly promising source of energy, but researchers are trying to find microbes that readily degrade recalcitrant lignin found in plant biomass. Recent comprehensive genomic and metabolomic analysis of a known lignin-degrading bacterium provides insight into how this degradation is accomplished.

Because the initial step of manufacturing biofuels from plant matter is the decomposition of complex lignocellulose into more manageable "building blocks," an understanding of how nature achieves this is critical. The findings from a new study reveal some of the basic tools used by a specific microbe to break down lignocellulose. This work provides insight into how industrial processes might achieve degradation during biofuel production, and how side processes such as might be harnessed as well.

Lignocellulosic biomass represents nearly 90 percent of the dry weight of total material, and is a composition of cellulose and . Lignin lends rigidity and rot-resistance to cell walls in wood and bark. It is a complex, cross-linked phenolic structure that makes lignocellulosic-derived biofuels a promising source of alternative energy, provided the recalcitrant material can be degraded and toxic by-products can be managed. Microbial species that grow in environments where carbon is mainly available as lignin are promising for finding new ways of removing lignin that protects cellulose for improved conversion of lignin to fuel precursors.

One candidate species that can use lignin for growth in the absence of oxygen is Enterobacter lignolyticus SCF1, a bacterium isolated from tropical rain forest soil. A team of researchers from the University of Massachusetts, Amherst; Santa Maria University in Valparaiso, Chile; and EMSL, the Environmental Molecular Sciences Laboratory conducted whole gene-expression analysis of E.lignolyticus SCF1 using next generation sequencing for transcriptomic analysis. The experiments were conducted on cells grown in the presence of lignin, with samples taken at three different times during growth. Cultures with lignin achieved twice the cell biomass as cultures grown without lignin, and degraded 60 percent of the available lignin.

A complement of enzymes consistent with disruption of the chemical structures present in lignin were up-regulated in lignin-amended conditions. Additionally, the association of hydrogen production with lignin degradation suggests a possible value add to lignin degradation in the future.

Explore further: Soil bacterium causes biofuel breakdown

More information: Roberto Orellana et al. Multi-time series RNA-seq analysis of Enterobacter lignolyticus SCF1 during growth in lignin-amended medium, PLOS ONE (2017). DOI: 10.1371/journal.pone.0186440

Related Stories

Soil bacterium causes biofuel breakdown

January 13, 2014

(Phys.org) —Biofuels made from plant materials—also known as lignocellulosic biofuels—have promise as a source of sustainable alternative fuels thanks to soil bacterium known as Enterobacter lignolyticus SCF1. SCF1 ...

Lignin-feasting microbe holds promise for biofuels

November 13, 2013

Nature designed lignin, the tough woody polymer in the walls of plant cells, to bind and protect the cellulose sugars that plants use for energy. For this reason, lignin is a major challenge for those who would extract those ...

Lignin waste modified for industrial bio-oil use

September 11, 2017

Lignin, a waste product in biomass and ethanol production, now finds new value as bio-oil in new products. At the University of Borås, Sweden, a team of researchers has investigated methods to extract and refine lignin for ...

Surrounded by potential: New science in converting biomass

October 4, 2017

In every plant—from trees to crops—there exists a substance that makes up its wood or stems, fiber, and cell walls. This substance is a complex natural polymer called lignin, and it is the second largest renewable carbon ...

New, simple technique may drive down biofuel production costs

January 7, 2014

Researchers at North Carolina State University have developed a simple, effective and relatively inexpensive technique for removing lignin from the plant material used to make biofuels, which may drive down the cost of biofuel ...

Biotechnology researchers turn to landfill sites

August 22, 2017

Far from being a load of rubbish, landfill sites should be considered one of the great untapped resources in the search for new enzymes for biotechnology, and could fuel more efficient biofuel production.

Recommended for you

Sightings, satellites help track mysterious ocean giant

August 19, 2018

The sight of a basking shark's brooding silhouette gliding through the waters off western France is more than just a rare treat for sailors—it is a boon for scientists trying to trace its secretive migrations across the ...

Pigs form a visual concept of human faces

August 17, 2018

Contrary to previous studies, pigs appear to have better visual discrimination abilities than had previously been assumed. Cognition researchers from the Messerli Research Institute showed in a new study that pigs not only ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.