Micro-grippers may be able to navigate unstructured environments

December 13, 2017, Public Library of Science
Figure 1 of article depicting the PacMan™-like maze. Credit: Ongaro et al (2017)

Micro-grippers may be able to navigate unstructured environments and could help reduce risk during surgeries, according to a study published December 13, 2017 in the open-access journal PLOS ONE by Federico Ongaro from the University of Twente, The Netherlands and colleagues.

Microrobotic technologies such as micro-grippers could potentially help grasp and manipulate objects in unstructured microscopic environments. For example, wireless micro-grippers that are powered by the heat of their surroundings might navigate blood vessels more precisely than current medical devices, which must be tethered to a , and this could potentially reduce risk during some surgeries.

The researchers created four different types of heat-powered micro-grippers, of differing shapes and sizes but all less than a millimeter long. They tested how each navigated a virtual PacMan-like filled with obstacles. Their model showed that the micro-grippers could navigate the virtual maze at up to 3.4 body-lengths per second and that the length, volume and shape of the gripper were important characteristics for navigating the successfully. Their analysis suggested that three of the designs might theoretically be capable of moving against the blood-flow in capillaries, which averages 0.3 mm/s.

While these results are specific to the chosen designs, they provide quantitative data for future designers to construct micro-grippers to suit their needs. The researchers next hope to explore how their grippers navigate blood flow in a three-dimensional environment. "This work demonstrates autonomous planning and control of magnetic micro-grippers in PacMan-like mazes," states Ongaro. "The applications for this work are in and micro-manipulation."

Explore further: Flexible soft gripper mimics gecko to pick up objects with curved surfaces

More information: Ongaro F, Scheggi S, Ghosh A, Denasi A, Gracias DH, Misra S (2017) Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface. PLoS ONE 12(12): e0187441. doi.org/10.1371/journal.pone.0187441

Related Stories

Da Vinci surgical robot makes a tiny paper airplane

April 5, 2011

(PhysOrg.com) -- The da Vinci surgical robot may be best known for performing prostate, gynecological, and heart valve surgeries. But in its spare moments, as Dr. James Porter of the Swedish Medical Center in Seattle has ...

Microscopic 'hands' for building tomorrow's machines

January 19, 2009

In a finding straight out of science fiction, chemical and biomolecular engineers in Maryland are describing development of microscopic, chemically triggered robotic "hands" that can pick up and move small objects. They could ...

Recommended for you

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

A river of stars in the solar neighborhood

February 15, 2019

Astronomy & Astrophysics publishes the work of researchers from the University of Vienna, who have found a river of stars, a stellar stream in astronomical parlance, covering most of the southern sky. The stream is relatively ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.