Better mastery of heat flow leads to next-generation thermal cloaks

December 4, 2017, Springer

Ever heard of the invisibility cloak? It manipulates how light travels along the cloak to conceal an object placed behind it. Similarly, the thermal cloak is designed to hide heated objects from infrared detectors without distorting the temperature outside the cloak. Materials for such cloaks would need to offer zero thermal conductivity to help camouflage the heat. Now, Liujun Xu and colleagues from Fudan University, Shanghai, China, have explored a new mechanism for designing such materials. These findings published in EPJ B could have implications for manipulating the transfer of thermal energy as a way to ultimately reduce heat waste from fossil fuels and help mitigate energy crises.

In this work, for the first time the authors experimentally verify that the inner composition of materials, which presents a non-uniform periodic structure, can exhibit quasi-uniform heat conduction. To do so, they use an infrared camera to detect heat in experimental samples placed between a hot and cold bath. These results confirm their own equations predicting the of the periodic material.

To achieve the desired thermal , they rely on quasi-uniform heat conduction. Instead of producing an omnidirectional illusion, showing objects with the same temperature signature regardless of the angle of observation, the authors introduce what they refer to as the Janus thermal illusion. It features an object whose heat is not detectable from one direction, thus forming an invisible illusion. By contrast, it features a different heat signature than its actual signature along the vertical axis, thus forming a different type of illusion, which is visible but not displaying the reality.

To remove the influence of thermal convection and radiation from their experimental results, the authors also perform simulations. These in turn help to develop the concept of 'illusion thermal diodes', which approach thermal illusion as an additional degree of freedom for management. Ultimately, these diodes could be applied in fields that require both thermal camouflage and thermal rectification.

Explore further: Clothing fabric keeps you cool in the heat

More information: Liujun Xu et al, Periodic composites: quasi-uniform heat conduction, Janus thermal illusion, and illusion thermal diodes, The European Physical Journal B (2017). DOI: 10.1140/epjb/e2017-80524-6

Related Stories

Clothing fabric keeps you cool in the heat

November 16, 2017

(Phys.org)—Researchers have designed a thermal regulation textile that has a 55% greater cooling effect than cotton, which translates to cooler skin temperatures when wearing clothes made of the new fabric. The material ...

Quantum thermal transistor can control heat currents

May 31, 2016

(Phys.org)—Researchers have designed a quantum thermal transistor that can control heat currents, in analogy to the way in which an electronic transistor controls electric current. The thermal transistor could be used in ...

Recommended for you

Smart window controls light and heat, kills microorganisms

July 13, 2018

A new smart window offers more than just a nice view—it also controls the transmittance of sunlight, heats the interiors of buildings by converting solar radiation into heat, and virtually eliminates E. coli bacteria living ...

Quantum dot white LEDs achieve record efficiency

July 12, 2018

Researchers have demonstrated nanomaterial-based white-light-emitting diodes (LEDs) that exhibit a record luminous efficiency of 105 lumens per watt. Luminous efficiency is a measure of how well a light source uses power ...

How gold nanoparticles could improve solar energy storage

July 12, 2018

Star-shaped gold nanoparticles, coated with a semiconductor, can produce hydrogen from water over four times more efficiently than other methods—opening the door to improved storage of solar energy and other advances that ...

Graphene smart membranes can control water

July 12, 2018

Researchers at The University of Manchester's National Graphene Institute (NGI) have achieved a long-sought-after objective of electrically controlling water flow through membranes, as reported in Nature.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.