Early disease diagnosis could be dramatically improved with new detection system

December 20, 2017 by Hayley Dunning, Imperial College London
Credit: Imperial College London

By attaching specialised molecules to the backbone of DNA, researchers have made it easier to detect rare molecules associated with early disease.

The presence of, or changes in the concentration of, certain proteins in biological fluids can be indicators of . However, in the early stages of disease these 'biomarkers' can be difficult to detect, as they are relatively rare.

Detecting important biomarkers in lower concentrations will allow patients to be treated earlier for diseases such as some cancers and neurological disorders, which could increase the chance of survival rate.

However, current methods of detection are often not sufficiently sensitive and require costly and time-consuming sample pre-treatment.

Now, researchers from the Department of Chemistry at Imperial College London have come up with a system that is specific, flexible, and can detect single protein biomarkers directly in human serum (a pool of fluid separated from blood).

The system represents a significant innovation, as it is more sensitive to specific biomarkers and does not require clinical sample preparation. The method is published in Nature Communications.

Dr. Alex Ivanov, co-leader of this study from the Department of Chemistry at Imperial, said: "The detection of single molecules of biomarkers represents the ultimate in sensitivity for . We have now shown that this is possible to perform such measurements in real human samples, opening up the potential for meaningful early diagnosis."

Binding to biomarkers

The method the team developed uses the 'backbone' of DNA, the structure it is built around. They grafted 'aptamers' – synthetic DNA molecules that bind to specific target biomarkers – to DNA backbones.

When added to human serum, the aptamers bind to biomarkers before being analysed by passing through a nanopore detector. Nanopores are miniscule holes (often as small as a few billionths of a meter) that measure a change in electrical current as pass through them.

Each has a unique current signature, so the presence and concentration of target biomarkers can be analysed in this way.

Explore further: Copying nature's lock-and-key system could improve rapid medical diagnostics

More information: Jasmine Y. Y. Sze et al. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers, Nature Communications (2017). DOI: 10.1038/s41467-017-01584-3

Related Stories

A tiny wire with a memory to diagnose cancer

August 17, 2016

EPFL researchers have used a nanowire to detect prostate cancer with greater accuracy than ever before. Their device is ten times more sensitive than any other biosensor available.

A portable device for rapid and highly sensitive diagnostics

February 22, 2016

When remote regions with limited health facilities experience an epidemic, they need portable diagnostic equipment that functions outside the hospital. As demand for such equipment grows, EPFL researchers have developed a ...

Recommended for you

Seeing small-molecule interactions inside cells

December 12, 2018

Like people in a large company, proteins in cells constantly interact with each other to perform various jobs. To develop new disease therapies, researchers are trying to control these interactions with small-molecule drugs ...

The stiffest porous lightweight materials ever

December 12, 2018

Researchers at ETH have developed and manufactured a family of architectures that maximises the stiffness of porous lightweight materials. It's practically impossible to develop stiffer designs.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.