Study of beetle flagellum offers possible way to improve medical devices

December 21, 2017 by Bob Yirka, Phys.org report
Confocal laser scanning microscope (CLSM) image of the Cassida rubiginosa flagellum tip (25 μm). Credit: Matsumura, Kovalev, Gorb, Sci. Adv. 2017;3: eaao5469

A trio of researchers at Kiel University in Germany has discovered how the male thistle tortoise beetle manages to penetrate the coiled duct inside the female reproductive organ without buckling his flagellum. In their paper published on the open access site Science Advances, Yoko Matsumura, Alexander Kovalev and Stanislav Gorb describe their study of the flagellum and what they found.

The small green male thistle tortoise beetle has a flagellum () that is actually longer than its body—the organ is also very thin and curved at the end. The beetle needs such an organ because of the shape of the female reproductive organ, which includes a coiled duct that the male must penetrate. What is most impressive about the flagellum, the researchers note, is that its tip can make the journey from the outside to the inside without the shaft buckling. This suggested that there was more to the story than could be seen with the naked eye.

To better understand how the beetle flagellum is able to prevent buckling, the researchers lopped off several of them from they had killed and looked at them under a microscope. They noted first that the tip was curved like a fish hook, which is important when maneuvering through a coil, so long as the curve of the flagellum tip matches the curve of the coil. They also found by bending the flagellum at different points along its shaft that it varied in stiffness—the base was quite stiff, but the shaft grew less stiff toward its opposite end. And the tip, they found, was actually rubbery, allowing for flexibility inside the female organ.

Mating of leaf beetles, its male and female reproductive organs, and new findings on stiffness gradient of the penis found based on a bending test done on a microscope. Credit: Yoko Matsumura, Alexander Kovalev, Stanislav N. Gorb / Matsumura, Kovalev, Gorb

The researchers believe it is both the changing flexibility and rubbery tip that allows the to move inside the female organ without buckling—a characteristic that could prove useful in human products, such as catheters. Catheters, the team notes, are used in urological, gastrointestinal and cardiovascular medical procedures. Each requires a thin tube to be inserted into a small vessel and slide into it to some degree. Modifying the stiffness of the tubes, the team notes, might help prevent buckling.

SEM images of the flagellum of Cassida rubiginosa. (A) Map of the images below, the tip of the flagellum. (B to E) Enlarged images of the flagellum corresponding to the squares in (A). The pink-colored areas in (B) and (C) represent shrunk surfaces. The scale bar in (B) is applicable for (C) to (E). Credit: Matsumura, Kovalev, Gorb, Sci. Adv. 2017;3: eaao5469

Explore further: It depends on the level of stiffness: Researchers investigate beetle penises

More information: Yoko Matsumura et al. Penetration mechanics of a beetle intromittent organ with bending stiffness gradient and a soft tip, Science Advances (2017). DOI: 10.1126/sciadv.aao5469

Abstract
Hyper-elongated structures and their penetration are widespread among insects, for example, intromittent organs, ovipositors, and piercing-sucking mouthparts. The penetration of thin structures with high aspect ratio without buckling and rupturing is mechanically very challenging. However, this problem is economically solved in nature, and the solutions might be helpful for, for example, in the development of harmless catheters. We focus on the penetration process of a hyper-elongated structure of a cassidine beetle intromittent organ, termed a flagellum. We applied a three-point bending test for the flagellum to measure its bending stiffness along the entire flagellum. We demonstrated the bending stiffness gradient, in which the basal half is relatively stiff and the apical half is softer, whose good performance during copulation had been previously numerically demonstrated. The stiffness gradient is the result of the flagellum shape, which is cylindrical and tapered toward the tip. Moreover, the curved tip comprises a harder outer curve and a softer inner curve. Considering the findings of preceding studies, the flagellum works in the following way: (i) the bending stiffness gradient supports the flagellum, easily fitting to a shape of a highly coiled spermathecal duct, (ii) the stiffness property of the very tip may make the tip tougher, and (iii) the curled tip and homogeneously cylindrical shape of the organ help the very tip to fit the shape of the spermathecal duct of the female. Our study shows that the apparently simple flagellum penetration is achieved with numerous elaborate mechanical adaptations.

Related Stories

How nature engineered the original rotary motor

April 13, 2017

The bacterial flagellum is one of nature's smallest motors, rotating at up to 60,000 revolutions per minute. To function properly and propel the bacterium, the flagellum requires all of its components to fit together to exacting ...

Nerves found to exist in male spider genitalia

July 8, 2015

(Phys.org)—A trio of researchers working in Germany has discovered that male spiders do indeed have nerves in their genitalia, overturning prior research that has suggested otherwise. In their paper published in The Royal ...

Microbial resident enables beetles to feed on a leafy diet

November 16, 2017

An international team including researchers from the Max Planck Institute for Chemical Ecology has described a bacterium residing in a species of leaf beetles which has an unexpected feature: it provides the beetle with the ...

Recommended for you

Humans account for little next to plants, worms, bugs

May 21, 2018

When you weigh all life on Earth, billions of humans don't amount to much compared to trees, earthworms or even viruses. But we really know how to throw what little weight we have around, according to a first-of-its-kind ...

How animals holler

May 21, 2018

While humans can only broadcast about one percent of their vocal power through their speech, some animals and mammals are able to broadcast 100 percent. The secret to their long-range howls? A combination of high pitch, a ...

Profiling the genome hundreds of variations at a time

May 21, 2018

Geneticists have been using model organisms ranging from the house mouse to the single-cell bakers' yeast, Saccharomyces cerevisiae, to study basic biological processes that regulate human development and physiology, and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.