All-nanotube stretchable supercapacitor with low equivalent series resistance

December 27, 2017, Skolkovo Institute of Science and Technology
Scanning electron image of BNNT separator on top of the SWCNT film electrode, (B) EIS spectra of the as-fabricated supercapacitor (blue) after 1000 stretching cycles under 25% (black) strain, 50% (red) elongation; (C) cyclic voltammetry spectra of as-fabricated SSC device (blue), 25% (black) and 50% (red) strain after 1000 stretching cycles. Credit: Skolkovo Institute of Science and Technology

Currently, research in the domain of flexible and stretchable supercapacitors is focused on adjusting electrodes, as they have the most significant effect on performance. However, the separator materials for such applications remain largely unexplored. Recently, a group of scientists from Skoltech and Aalto University (Finland) proposed a novel method for the fabrication of an all-nanotube stretchable supercapacitor from SWCNTs film electrodes and BNNTs separator.

Besides being dielectric, porous and chemically inert, the separators for stretchable supercapacitors need to withstand bending and stretching without severe structural damages. Materials that are known to meet these requirements include polymers and polymer-based electrolytes. However, despite being inexpensive and nontoxic, such show poor wetting with aqueous electrolytes and have problems with mechanical strength. Moreover, their high thickness (0.2 mm) results in high internal resistances of the assembled . In contrast, (BNNTs), which were used in this work, is a dielectric nanomaterial that shows high Young's modulus and tensile strength, and thus considered perfect materials for stretchable applications. Another key component of the supercapacitors are electrodes, which have to be highly conductive and mechanically stable. In this study, researchers used carbon nanotube films (CNTs) as such material has a unique pore structure, high specific surface area, low electrical resistivity and high chemical stability, and exceptionally high Young's modulus of elasticity and tensile strength.

The BNNT separator of only 0.5 µm thickness ensured reliable short circuit protection and low equivalent series resistance (ESR) of the stretchable supercapacitor (SSC). The device, fabricated in a test cell configuration for material characterization retains 96 percent of its initial capacitance after 20 000 charging/discharging cycles with low equivalent series resistance of 4.6 Ω. The stretchable prototype withstands at least 1000 cycles of 50 percent strain with a slight increase in the volumetric capacitance and volumetric power density from 32 mW cm−3 to 40 mW cm−3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 Ω for the as-fabricated stretchable prototype was obtained. The simple fabrication process of such devices can be easily extended, making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.

"In this work, we applied thin films of SWCNTs as the electrodes and BNNTs as the separator to fabricate all-nanotube stretchable supercapacitors. We chose to use the SWCNT and BNNT films together due to several important qualities, such as lattice structures, which strengthen the material between the walls of both materials and make it possible to test and characterize the device under mechanical stretching. We also successfully solved the problem of separator thickness and resistance keeping elastic properties of the device," said Skoltech Ph.D. student Evgenia Gilshteyn, the study's lead author.

Skoltech Professor Albert Nasibulin added: "The technology of the SSC fabrication is very simple, as it is based on dry deposition transferring and airbrushing techniques. With its stable performance, the device could act as a promising candidate for wearable electronic devices and flexible energy storage systems."

Explore further: Transparent, flexible supercapacitors pave the way for a multitude of applications

More information: Gilshteyn, E. P., Amanbayev, D., Anisimov, A. S., Kallio, T., & Nasibulin, A. G. (2017). All-nanotube stretchable supercapacitor with low equivalent series resistance. Scientific Reports, 7(1), 17449.

Related Stories

Superstretchable, supercompressible supercapacitors

July 3, 2017

Flexible, wearable electronics require equally flexible, wearable power sources. In the journal Angewandte Chemie, Chinese scientists have introduced an extraordinarily stretchable and compressible polyelectrolyte which, ...

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Recommended for you

Weaponizing oxygen to kill infections and disease

August 19, 2018

The life-threatening bacteria called MRSA can cripple a hospital since it spreads quickly and is resistant to treatment. But scientists report that they are now making advances in a new technique that avoids antibiotics. ...

Flexible color displays with microfluidics

August 16, 2018

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply ...

Twisted electronics open the door to tunable 2-D materials

August 16, 2018

Two-dimensional (2-D) materials such as graphene have unique electronic, magnetic, optical, and mechanical properties that promise to drive innovation in areas from electronics to energy to materials to medicine. Columbia ...

Scientists discover why silver clusters emit light

August 16, 2018

Clusters of silver atoms captured in zeolites, a porous material with small channels and voids, have remarkable light-emitting properties. They can be used for more efficient lighting applications as a substitute for LED ...

Novel sensors could enable smarter textiles

August 16, 2018

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.