'Perfectly frustrated' metal provides possible path to superconductivity, other new quantum states

November 9, 2017 by Laura Millsaps, Ames Laboratory
'Perfectly frustrated' metal provides possible path to superconductivity
A diagram modeling competing or "frustrated" magnetic states in neighboring electrons. Condensed matter physicists use the term “frustrated” to describe a kind of magnet in which the spins fail to align into stable magnetic order. Their unique properties are of interest in the development of quantum computing and high-temperature superconductivity. Credit: Ames Laboratory

The U.S. Department of Energy's Ames Laboratory has discovered and described the existence of a unique disordered electron spin state in a metal that may provide a unique pathway to finding and studying frustrated magnets.

Condensed matter physicists use the term "frustrated" to describe a kind of magnet in which the spins fail to align into stable magnetic order. In perfectly frustrated magnets called spin liquids, the disordered of these materials persists even at very low temperatures, and their unique properties are of interest in the development of quantum computing and high-temperature superconductivity.

The materials investigated to search for this perfectly frustrated magnetic state are typically insulators. But Ames Laboratory researchers were able to define a "perfectly frustrated" state in a metallic material, CaCo1.86As2.

"Perfectly frustrated systems, ones that really cannot resolve their magnetic , are difficult to find in the first place, but even more so in a metal," said Rob McQueeney, scientist at Ames Laboratory.

In insulating magnets, the interactions between spins that lead to frustration are set by the crystal structure of the lattice, and are relatively immutable. The discovery of this nearly perfectly frustrated metal provides a new avenue for tinkering with the magnetic interactions to achieve perfect frustration.

"Here, we have a little knob that we can tune. We know that some of these interactions that lead to frustration are mediated by conduction electrons, and we can tune a number of those very accurately—maybe you get a superconductor, maybe some other novel quantum state. There's a lot of promise there."

The research is further discussed in the paper "Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo2-yAs2," authored by A. Sapkota, B.G. Ueland, V.K. Anand, N.S. Sangeetha, D.L. Abernathy, M.B. Stone J.L. Niedziela, D.C. Johnston, A. Kreyssig, A.I. Goldman, and R.J. McQueeney; and published in Physical Review Letters.

Explore further: How 'frustrated' magnets escape magnetic deadlock at low temperatures

More information: A. Sapkota et al. Effective One-Dimensional Coupling in the Highly Frustrated Square-Lattice Itinerant Magnet CaCo2−yAs2, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.147201

Related Stories

Frustrated magnets point towards new memory

September 23, 2015

Theoretical physicists from the University of Groningen, supported by the FOM Foundation, have discovered that so-called 'frustrated magnets' can produce skyrmions, tiny magnetic vortices that may be used in memory storage. ...

Understanding how electrons turn to glass

October 24, 2017

Researchers at Tohoku University have gained new insight into the electronic processes that guide the transformation of liquids into a solid crystalline or glassy state.

Recommended for you

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Hyperfuzzy
not rated yet Nov 12, 2017
'cause we stupid, we have no idea of the mean path length of any charge in the material, we just stress stuff, see if that works

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.