New study finds timing is key in keeping organic matter in wet soils

November 28, 2017, Iowa State University
Periodically wet soils, such as farm fields that flood for a few days or weeks at a time, may not retain organic matter as well as once believed, according to new research. Credit: Steven Hall

When it comes to keeping organic matter contained in wet soils, timing is everything. At least, that's what a new study led by an Iowa State University ecologist suggests.

The findings, published recently in the peer-reviewed academic journal Nature Communications, show periodically flooded soils may actually lose organic at accelerated rates, said Steven Hall, an assistant professor of ecology, evolution and organismal biology and corresponding author of the study. The findings contradict the widely held view that soils with high water content necessarily accumulate organic matter better than dry soils, which could have implications for agricultural and wetlands conservation practices, Hall said.

Keeping organic matter, or the remains left behind after crops and other plants die or are harvested, in the leads to two important benefits. First, optimal levels of organic matter in the soil improve fertility, Hall said. The second benefit concerns carbon sequestration. If the carbon that makes up much of the organic matter remains stored in the soil, then it doesn't get into the atmosphere where it can contribute to climate change.

Hall said wet soil cuts off oxygen to many of the microorganisms that break down organic matter, leading to slower decomposition and better retention in the soil. That's led to the belief that do a better job of keeping organic matter in place. But Hall's findings showed that the absence of oxygen in wet soils gives rise to some bacteria that respire iron, which break down the minerals that protect a significant portion of organic matter from decomposition. These bacteria then have free reign to decompose the organic matter and release carbon into the atmosphere as the greenhouse gases carbon dioxide and methane.

The study found timing plays a key role in how well wet soils retain organic matter. While soils with consistently high moisture content do retain organic matter over the long term, soils may actually lose organic matter during shorter spans of flooding. The findings have implications for agricultural fields that are poorly drained or flood for a few weeks of the year before drying out, Hall said. The study also shows that wetlands, considered a useful tool for conservation and carbon sequestration, may require consistent flooding to realize environmental benefits from organic matter accumulation.

"We found that periodically wet soils don't necessarily protect organic matter from decomposition and may lead to losses, at least over a timescale of weeks to months," he said.

The study drew on research conducted in an ISU laboratory. The researchers took soil samples from a central Iowa cornfield and subjected the sample to various conditions before conducting chemical analyses.

Hall said future research should widen in scope and include field experiments as well as laboratory-based work. He said he wants to test how various drainage techniques influence loss as well as pinpoint the length of time required for wet soil to realize environmental benefits.

Explore further: Researchers study organic matter processes in rice fields

More information: Wenjuan Huang et al. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter, Nature Communications (2017). DOI: 10.1038/s41467-017-01998-z

Related Stories

Researchers study organic matter processes in rice fields

November 1, 2017

A soil scientist from RUDN University reports that plant root secretions affect microorganisms and biochemical processes in paddy soils such as rice fields. Rice field soils play a very important role in the agriculture of ...

How carbon farming can help solve climate change

November 22, 2017

Under the 2015 Paris Agreement, nations pledged to keep the average global temperature rise to below 2C above pre-industrial levels and to take efforts to narrow that increase to 1.5C. To meet those goals we must not only ...

Recommended for you

In China, a link between happiness and air quality

January 21, 2019

For many years, China has been struggling to tackle high pollution levels that are crippling its major cities. Indeed, a recent study by researchers at Chinese Hong Kong University has found that air pollution in the country ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.