Heavy nitrogen molecules reveal planetary-scale tug-of-war

November 17, 2017, Rice University
Researchers from Rice University and UCLA simulated high-energy chemistry in the upper atmosphere to reproduce enriched levels of 15N15N, molecules that contain only heavy isotopes of nitrogen. Credit: Laurence Yeung/Rice University

Nature whispers its stories in a faint molecular language, and Rice University scientist Laurence Yeung and colleagues can finally tell one of those stories this week, thanks to a one-of-a-kind instrument that allowed them to hear what the atmosphere is saying with rare nitrogen molecules.

Yeung and colleagues at Rice, UCLA, Michigan State University and the University of New Mexico counted rare molecules in the atmosphere that contain only heavy isotopes of and discovered a planetary-scale tug-of-war between life, the deep Earth and the that is expressed in .

The research was published online this week in the journal Science Advances.

"We didn't believe it at first," said Yeung, the lead author of the study and an assistant professor of Earth, environmental and planetary sciences at Rice. "We spent about a year just convincing ourselves that the measurements were accurate."

The story revolves around nitrogen, a key element of life that makes up more than three-quarters of Earth's atmosphere. Compared with other key elements of life like oxygen, hydrogen and carbon, nitrogen is very stable. Two atoms of it form N2 molecules that are estimated to hang around in the atmosphere for about 10 million years before being broken apart and reformed. And the vast majority of nitrogen has an atomic mass of 14. Only about 0.4 percent are nitrogen-15, an isotope that contains one extra neutron. Because nitrogen-15 is already rare, N2 molecules that contain two nitrogen-15s—which chemists refer to as 15N15N—are the rarest of all N2 molecules.

The new study shows that 15N15N is 20 times more enriched in Earth's atmosphere than can be accounted for by processes happening near Earth's surface.

"We think the 15N15N enrichment fundamentally comes from chemistry in the upper atmosphere, at altitudes close to the orbit of the International Space Station," Yeung said. "The tug-of-war comes from life pulling in the other direction, and we can see chemical evidence of that."

Co-author Edward Young, professor of Earth, planetary and space sciences at UCLA, said, "The enrichment of 15N15N in Earth's atmosphere reflects a balance between the nitrogen chemistry that occurs in the atmosphere, at the surface due to life and within the planet itself. It's a signature unique to Earth, but it also gives us a clue about what signatures of other planets might look like, especially if they are capable of supporting life as we know it."

The chemical processes that produce molecules like N2 can change the odds that "isotope clumps" like 15N15N will be formed. In previous work, Yeung, Young and colleagues used isotope clumps in oxygen to identify tell-tale signatures of photosynthesis in plants and ozone chemistry in the atmosphere. The nitrogen study began four years ago when Yeung, then a postdoctoral researcher at UCLA, learned about a first-of-its-kind mass spectrometer that was being installed in Young's lab.

"At that time, no one had a way to reliably quantify 15N15N," said Yeung, who joined Rice's faculty in 2015. "It has an of 30, the same as nitric oxide. The signal from nitric oxide usually overwhelms the signal from 15N15N in mass spectrometers."

The difference in mass between and 15N15N is about two one-thousandths the mass of a neutron. When Yeung learned that the new machine in Young's lab could discern this slight difference, he applied for grant funding from the National Science Foundation (NSF) to explore exactly how much 15N15N was in Earth's atmosphere.

Laurence Yeung. Credit: Jeff Fitlow/Rice University
"Biological processes are hundreds to a thousand times faster at cycling nitrogen through the atmosphere than are geologic processes," Yeung said. "If it's all business as usual, one would expect that the atmosphere would reflect these biological cycles."

To find out if this was the case, co-authors Joshua Haslun and Nathaniel Ostrom at Michigan State University conducted experiments on N2-consuming and N2-producing bacteria to determine their 15N15N signatures.

These experiments suggested that one should see a bit more 15N15N in air than random pairings of nitrogen-14 and nitrogen-15 would produce—an enrichment of about 1 part per 1,000, Yeung said.

"There was a bit of enrichment in the biological experiments, but not nearly enough to account for what we'd found in the atmosphere," Yeung said. "In fact, it meant that the process causing the atmospheric 15N15N enrichment has to fight against this biological signature. They are locked in a tug-of-war."

The team eventually found that zapping mixtures of air with electricity, which simulates the chemistry of the upper atmosphere, could produce enriched levels of 15N15N like they measured in air samples. Mixtures of pure nitrogen gas produced very little enrichment, but mixtures approximating the mix of gases in Earth's could produce a signal even higher than what was observed in air.

"So far we've tested natural air samples from ground level and from altitudes of 32 kilometers, as well as dissolved air from shallow ocean water samples," he said. "We've found the same enrichment in all of them. We can see the tug-of-war everywhere."

Explore further: Atmospheric beacons guide NASA scientists in search for life

More information: "Extreme Enrichment in Atmospheric 15N15N" Science Advances (2017). DOI: 10.1126/sciadv.aao6741 , http://advances.sciencemag.org/content/3/11/eaao6741

Related Stories

Atmospheric beacons guide NASA scientists in search for life

November 2, 2017

Some exoplanets shine brighter than others in the search for life beyond the solar system. New NASA research proposes a novel approach to sniffing out exoplanet atmospheres. It takes advantage of frequent stellar storms—which ...

Photosynthesis has unique isotopic signature

April 23, 2015

Photosynthesis leaves behind a unique calling card, a chemical signature that is spelled out with stable oxygen isotopes, according to a new study in Science. The findings suggest that similar isotopic signatures could exist ...

How much carbon and nitrogen is there on planet Earth?

November 29, 2016

Carbon and nitrogen are central to life on Earth – life cannot exist without them, but an overabundance in the atmosphere imperils the life we have. So how much carbon and nitrogen is there on (and in) planet Earth? And ...

Recommended for you

Evidence of earliest life on Earth disputed

October 17, 2018

When Australian scientists presented evidence in 2016 of life on Earth 3.7 billon years ago—pushing the record back 220 million years—it was a big deal, influencing even the search for life on Mars.

Arctic greening thaws permafrost, boosts runoff

October 17, 2018

A new collaborative study has investigated Arctic shrub-snow interactions to obtain a better understanding of the far north's tundra and vast permafrost system. Incorporating extensive in situ observations, Los Alamos National ...

Arctic ice sets speed limit for major ocean current

October 17, 2018

The Beaufort Gyre is an enormous, 600-mile-wide pool of swirling cold, fresh water in the Arctic Ocean, just north of Alaska and Canada. In the winter, this current is covered by a thick cap of ice. Each summer, as the ice ...

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

jonesdave
2.6 / 5 (5) Nov 18, 2017
The gas inside must be 40 or 50 millitorr, my guess and I hope they were using an oilless pump or maybe a turbo pump. I would like to see the whole assembly.


The paper is free access. Scroll down to 'Materials and methods'. No pics, but a description.

http://advances.s...741.full
TechnoCreed
5 / 5 (2) Nov 18, 2017
And here are the specs of the tube.https://www.mksin...s-DS.pdf
jonesdave
2.6 / 5 (5) Nov 18, 2017
And here are the specs of the tube.https://www.mksin...s-DS.pdf


Nice find, TC!
TechnoCreed
5 / 5 (1) Nov 18, 2017
@Sonhouse
Yeung Lab web page http://www.yeungl...esearch/
Scroll down on this page at the bottom you have a diaporama.
One of these photo you get this https://static1.s...at=1500w
Look down bottom right, you are going to see this pump https://www.pfeif...ace-300/

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.