Filtration of nanoparticles from traffic should become a key criterion of building ventilation

November 16, 2017, VTT Technical Research Centre of Finland

Air filters that efficiently expel nanoparticles should be adopted in buildings. VTT Technical Research Centre of Finland and Tampere University of Technology (TUT) have developed a comparison technique which has detected marked differences between the nanoparticle-capturing performance of air filters.

Vehicles create harmful emissions which enter indoor air unless they are filtered out. Nanoparticle emissions from traffic have a major effect on the quality of indoor air and human health. Tiny nanoparticles penetrate deep into the lungs, causing damage in the pulmonary alveoli and blood circulation. The latest estimates suggest that nanoparticles cause around 7 million premature deaths around the globe each year. In cold weather, particulate levels in the open air can grow, when vehicle emissions increase and are suspended in the lower atmosphere.

VTT and TUT's research was the first to evaluate the performance of and mechanisms for filtering nanoparticles out of indoor air. The study involved exploring the features of good air filters and the development of comparison techniques. This did not involve tests of different manufacturers' products.

The study included a commonly used F7 class glass-fibre filter, HEPA-class filters, an electret filter and an electrostatic precipitator. The air filters included in the study filter out 50-100% of nanoparticles from traffic. Differences were observed in the filtration performance and energy efficiency of the filters.

"The commonly used F7 class filter removed more than 75% of soot nanoparticles emitted by traffic, which was an acceptable result. The electrostatic precipitator removed 94% and the more expensive HEPA class filters removed 100% of soot nanoparticles. On the other hand, the fibre filter was more efficient than the electric one at removing the very smallest nanoparticles. The type of filter also affects the load endurance and service intervals," says Postdoctoral Researcher Panu Karjalainen of TUT.

The results will open up new opportunities for the development of healthier . To date, building designers have had to investigate air filters under their own initiative, because the current standards and those taking effect next year take no account of small nanoparticles. That is why issues such as from traffic should be made a key criterion in development work.

"Ventilation designers, in particular, during the design and service and maintenance phase of new buildings, and developers, commissioners and consumers of air filters can now take advantage of the new findings," says Research Scientist Sampo Saari of VTT.

The study was also the first to investigate the filtering of very small nanocluster particles down to 1.3 nanometres in size. These are close to being gas molecules, but their filtration properties are different. All of the air that were tested effectively removed nanocluster particles smaller than 3 nanometres, which means that particles of this size are unlikely to enter indoor areas.

Explore further: Making 3-D printing safer

More information: Panu Karjalainen et al. Performance of ventilation filtration technologies on characteristic traffic related aerosol down to nanocluster size, Aerosol Science and Technology (2017). DOI: 10.1080/02786826.2017.1356904

Related Stories

Making 3-D printing safer

August 30, 2017

Within the past decade, 3-D printers have gone from bulky, expensive curiosities to compact, more affordable consumer products. At the same time, concerns have emerged that nanoparticles released from the machines during ...

Optimizing fuel filters via simulations

October 4, 2016

Filters developed for cars have to meet stricter and stricter requirements, yet they also need to be ready for the market in ever shorter periods of time. Designers caught between these two demands now have support in the ...

Wood filter removes toxic dye from water

April 24, 2017

Engineers at the University of Maryland have developed a new use for wood: to filter water. Liangbing Hu of the Energy Research Center and his colleagues added nanoparticles to wood, then used it to filter toxic dyes from ...

Recommended for you

Researchers make coldest quantum gas of molecules

February 21, 2019

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts ...

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.