Yeast spotlights genetic variation's link to drug resistance

October 17, 2017, Wellcome Trust Sanger Institute

Researchers have shown that genetic diversity plays a key role in enabling drug resistance to evolve. Scientists at the Wellcome Trust Sanger Institute and the Institute for Research on Cancer and Ageing of Nice in France, show that high genetic diversity can prime new mutations that cause drug resistance. The study published today (17 October) in Cell Reports has implications for our understanding of the evolution of resistance to antimicrobial and anticancer drugs.

The World Health Organisation classes antimicrobial resistance as one of the biggest threats to global health today. Currently 700,000 deaths a year worldwide, with 25,000 of those in the EU and 23,000 in the USA are linked to antimicrobial resistance. These figures are projected to rise to 10 million deaths a year by 2050 if nothing is done to tackle the problem. Equally, cancer is linked to 8.2 million annual deaths worldwide, with chemotherapy resistance a major limitation to treatment.

Previous studies had linked high genetic diversity within bacterial infections or in cancers with poor outcomes for patients treated with antimicrobial or chemotherapy drugs. Researchers in this study used budding yeast, creating populations of with more than 10 million different randomised genomes, to investigate how genetic diversity affected resistance. They evolved these to grow in antimicrobial drugs over 4 weeks and then studied the sensitive and resistant yeast cells.

Dr Ignacio Vazquez-Garcia, the first author from the Wellcome Trust Sanger Institute and University of Cambridge, said: "We found that the degree of diversity within the cell population - known as clonal heterogeneity - played a major role in the acquisition of . By sequencing the genomes of sensitive and resistant cells we showed that some cells were pre-adapted, or primed, while other cells acquired new mutations to gain resistance."

By then crossing the evolved strains, the researchers were able to investigate the complex evolutionary processes involved in developing resistance. They were able to see not only which mutations drove resistance - called driver mutations - but also how the background mutations affected these.

They discovered two types of driver mutations. Cells with weak driver mutations needed other background mutations to grow well in antimicrobial drugs, however cells with strong driver mutations developed resistance to drugs regardless of the genetic background.

Professor Gianni Liti, a senior author on the paper from the Institute for Research on Cancer and Ageing, Nice, said: "We were able to study the evolution in time by combining genome sequences of the cell populations and tracking the growth characteristics of the yeast cells. We found that the genetic background had a major influence on whether or not weaker mutations would confer , and in these cases many different cells adapted in a wave. However, with any , cells with strong driver could "leapfrog" and outcompete other cells growing in the drugs."

Professor Ville Mustonen, Senior author from the University of Helsinki and previously at the Wellcome Trust Sanger Institute, said: "Our study helps understand the evolution of resistance, and has implications not just for yeast, but also for bacteria and cancer. Whilst further study is needed, we are building evidence to show that in a bacterial infection or in a tumour being treated could lay the foundation for resistance to the therapy and affect how quickly develops."

Explore further: Researchers find novel mechanism of resistance to anti-cancer drugs

More information: Ignacio Vázquez-García et al, Clonal Heterogeneity Influences the Fate of New Adaptive Mutations, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.09.046

Related Stories

Deciphering the mutations behind drug resistance

July 13, 2016

Antimicrobial resistance in disease-causing microbes has garnered attention in recent years, but another persistent area of drug resistance is the ability for tumors to evade chemotherapy drugs. Methotrexate is one of the ...

How do cancers become resistant to chemotherapy?

April 3, 2012

Genetic mutations in cancer cells can lead to resistance to treatment, thereby potentially resulting in relapse. However, a new article, published April 3 in the magazine section of the online, open-access journal PLoS Biology, ...

Recommended for you

Climate change not main driver of amphibian decline

September 25, 2018

While a warming climate in recent decades may be a factor in the waning of some local populations of frogs, toads, newts and salamanders, it cannot explain the overall steep decline of amphibians, according to researchers.

The grim, final days of a mother octopus

September 25, 2018

Octopuses are the undisputed darlings of the science internet, and for good reason. They're incredibly intelligent problem-solvers and devious escape artists with large, complex nervous systems. They have near-magical abilities ...

Team names world's largest ever bird—Vorombe titan

September 25, 2018

After decades of conflicting evidence and numerous publications, scientists at international conservation charity ZSL's (Zoological Society of London) Institute of Zoology, have finally put the 'world's largest bird' debate ...

Team discovers new species of dazzling, neon-colored fish

September 25, 2018

On a recent expedition to the remote Brazilian archipelago of St. Paul's Rocks, a new species of reef fish—striped a vivid pink and yellow—enchanted its diving discoverers from the California Academy of Sciences. First ...

Built-in sound amplifier helps male mosquitoes find females

September 25, 2018

The ears of male mosquitoes amplify the sound of an approaching female using a self-generated phantom tone that mimics the female's wingbeats, which increases the ear's acoustic input by a factor of up to 45,000, finds a ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.