Sunlight stimulates microbial respiration of organic carbon

October 17, 2017, Environmental Molecular Sciences Laboratory
Sunlight stimulates microbial respiration of organic carbon
Study helps explain how sunlight alters microbial pathways and stimulates respiration in waters in the Arctic. Credit: Environmental Molecular Sciences Laboratory

Sunlight and microbes interact to degrade dissolved organic carbon (DOC) in surface waters, but scientists cannot currently predict the rate and extent of this degradation in either dark or light conditions. A recent study helps explain how sunlight alters organic matter composition.

The rates can process DOC is likely governed by a combination of the abundance and instability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that have to adapt to metabolize DOC that has been exposed to . This new information could help develop more accurate methods for assessing past climate.

Photochemical processing of DOC likely supplies about one-third of the CO2 released from surface waters in the Arctic, by either directly mineralizing DOC to CO2 or indirectly altering DOC chemical composition and, in turn, rates of microbial respiration. At present, scientists cannot predict the rate and extent of this degradation in either dark or . A team of researchers from University of Michigan, Woods Hole Oceanographic Institution, Oregon State University, and EMSL, the Environmental Molecular Science Laboratory, a DOE Office of Science user facility, combined advanced characterization techniques to characterize microbial and DOC composition.

The researchers characterized outputs of short-term photochemical experiments using Fourier-Transform Ion Cyclotron Resonance mass spectrometry at EMSL along with measures of microbial activity, community composition, and gene expression. In dark conditions, they found microbes native to deep permafrost, or surface organic layer soils, degraded the DOC that was most abundant in either soil.

They found sunlight exposure either produced or removed the abundant DOC used by microbes, which induced changes to key metabolic steps taken by the native microbial communities to adapt to and degrade the light-altered DOC. Alteration of permafrost DOC by sunlight to compounds used by microbes results in a two-fold increase in respiration rates, suggesting that when permafrost DOC is exported to sunlit it can be rapidly respired to CO2. The coupled photochemical and biological degradation of permafrost DOC may be an increasingly important component of the Arctic carbon budget as temperatures increase. The new findings could be used to develop more accurate methods for assessing climate processes.

Explore further: Sunlight and the right microbes convert Arctic carbon into carbon dioxide

More information: Collin P. Ward et al. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration, Nature Communications (2017). DOI: 10.1038/s41467-017-00759-2

Related Stories

Scientists investigate what breaks down permafrost carbon

February 14, 2017

A Florida State University researcher is delving into the complexities of exactly how permafrost thawing in the Earth's most northern regions is cycling back into the atmosphere as carbon dioxide and further fueling climate ...

Sunlight, not microbes, key to CO2 in Arctic

August 21, 2014

The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial activity.

New gene catalog of ocean microbiome reveals surprises

August 17, 2017

Microbes dominate the planet, especially the ocean, and help support the entire marine food web. In a recent report published in Nature Microbiology, University of Hawai'i at Mānoa (UHM) oceanography professor Ed DeLong ...

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.