New gene catalog of ocean microbiome reveals surprises

August 17, 2017, University of Hawaii at Manoa
HOT crew member Tara Clemente collects water from the CTD rosette for sample processing. Credit: HOT Program, UHM SOEST

Microbes dominate the planet, especially the ocean, and help support the entire marine food web. In a recent report published in Nature Microbiology, University of Hawai'i at Mānoa (UHM) oceanography professor Ed DeLong and his team report the largest single-site microbiome gene catalog constructed to date. With this new information, the team discovered nutrient limitation is a central driver in the evolution of ocean microbe genomes.

As a group, marine are extremely diverse and versatile with respect to their metabolic capabilities. All of this variability is encoded in their genes. Some marine microorganisms have genetic instructions that allow them to use the energy derived from sunlight to turn carbon dioxide into . Others use organic matter as a carbon and energy source and produce as a respiration end-product. Other, more exotic pathways have also been discovered.

"But how do we characterize all these diverse traits and functions in virtually invisible organisms, whose numbers approach a million cells per teaspoon of seawater?" asked DeLong, senior author on the paper. "This newly constructed, comprehensive gene catalog of microbes inhabiting the ocean waters north of the Hawaiian Islands addresses this challenge."

Water samples were collected over two years, and modern sequencing technologies were used to decode the genes and genomes of the most abundant microbial species in the upper 3,000 feet of water at the Hawai'i Ocean Time-series (HOT) Program open ocean field site, Station ALOHA.

WHOTS buoy marks the edge of Station ALOHA 100 km north of O'ahu, with the UHM vessel, R/V Kilo Moana. Credit: Paul Lethaby, UHM SOEST

Just below the depth of sunlit layer, the team observed a sharp transition in the microbial communities present. They reported that the fundamental building blocks of microbes, their genomes and proteins, changed drastically between depths of about 250-650 feet.

"In surface waters, are much smaller, and their proteins contain less nitrogen—a logical adaptation in this nitrogen-starved environment," said Daniel Mende, post-doctoral researcher at the UHM School of Ocean and Earth Science and Technology (SOEST) and lead author on the paper. "In deeper waters, between 400-650 feet, microbial genomes become much larger, and their proteins contain more nitrogen, in tandem with increasing nitrogen availability with depth."

"These results suggest that the availability of nutrients in the environment may actually shape how microbial genomes and proteins evolve in the wild," said DeLong. "Another surprising finding of the study is that the microbial 'genomic transition zone' observed occurs over a very narrow depth range, just beneath the sunlit layer. Below about 650 feet deep, the fundamental properties of microbial genomes and proteins are relatively constant, all the way down to the seafloor."

The CTD rosette is lowered into the waters around Station ALOHA. The bottles will close and capture water at specified depths during its re-accent to the surface. Credit: Tara Clemente, UHM SOEST

In collaboration with a computer science group led by professor Bonnie Hurwitz at the University of Arizona, the new database is available to scientists worldwide who are seeking to describe the nature and function of microbes in the global oceans.

"These new data will provide an important tool for understanding the nature and function of the 's microbiome today, as well as help predict its trajectory into the future," said DeLong.

Explore further: Sequencing Our Seas

More information: Daniel R. Mende et al, Environmental drivers of a microbial genomic transition zone in the ocean's interior, Nature Microbiology (2017). DOI: 10.1038/s41564-017-0008-3

Related Stories

Sequencing Our Seas

January 26, 2006

Scientists have sequenced and compared the genomes of planktonic microbes living throughout the water column in the Pacific Ocean. The pioneering study yielded insight into the specialization of microbial communities at each ...

Iron deficiency restrains marine microbes

May 19, 2017

Iron is a critical nutrient in the ocean. Its importance for algae and the nitrogen cycle has already been investigated in detail. Now, a new discovery shows that microbes also need iron to process phosphorus. A team of researchers ...

To understand the oceans' microbes, follow function, not form

September 21, 2016

A University of British Columbia mathematician may have discovered a key to understanding the constantly changing distribution of microbial species in the world's oceans—classify microorganisms by their biochemical function, ...

Recommended for you

Breakthrough test screens for all known bacterial infections

October 23, 2018

Scientists at the Center for Infection and Immunity (CII) in the Columbia University Mailman School of Public Health have developed the first diagnostic platform that can simultaneously screen for all known human pathogenic ...

New technique promises more accurate genomes

October 23, 2018

University of Adelaide researchers have developed a new technique that will aid in a more accurate reconstruction of human genomes by determining the exact sections of the genome that come from each parent.

Studying the hotbed of horizontal gene transfers

October 23, 2018

For over 200,000 years, humans and their gut microbiomes have coevolved into some of the most complex collections of living organisms on the planet. But as human lifestyles vary from the urban to rural, so do the bacterial ...

Researchers have discovered a new cell structure

October 23, 2018

A new structure in human cells has been discovered by researchers at Karolinska Institutet in Sweden in collaboration with colleagues in the U.K. The structure is a new type of protein complex that the cell uses to attach ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.