Scientists discover superconductor with bounce

October 23, 2017, Ames Laboratory
A single crystal of CaFe2As2 (scale bar 1 mm). Right: a micropillar of CaFe2As2, used to test its elasticity  (scale bar 1 μm). Credit: Ames Laboratory

The U.S. Department of Energy's Ames Laboratory has discovered extreme "bounce," or super-elastic shape-memory properties in a material that could be applied for use as an actuator in the harshest of conditions, such as outer space, and might be the first in a whole new class of shape memory materials.

Shape-memory materials "remember" their original shape and return to it after they are deformed. They are commonly that make possible "unbreakable" eyeglass frames and quieter jet engines.

But the material in this research, CaFe2As2, is not a metallic alloy but an intermetallic more well-known for its novel superconducting properties. It has been so extensively studied that the team of researchers, from Ames Laboratory and the University of Connecticut, also made note of its high degree of pressure and strain sensitivity, and wondered about its possibilities as a structural material.

The researchers created micropillars of the material through single crystal growth followed by focused ion beam milling, and then subjected them to mechanical compression testing. They found a recoverable strain that can exceed 13 percent.

"This was a fantastic and gratifying result," said Paul Canfield, a senior scientist at Ames Laboratory, and a Distinguished Professor and the Robert Allen Wright Professor of Physics and Astronomy at Iowa State University. "It fully confirmed our suspicions about CaFe2As2 offering a new mode of achieving superelastic effects and greatly expands the number of that may offer similar or even greater behavior."

Explore further: Physicists "learn the rules" of magnetic states in newly published research

More information: John T. Sypek et al. Superelasticity and cryogenic linear shape memory effects of CaFe2As2, Nature Communications (2017). DOI: 10.1038/s41467-017-01275-z

Related Stories

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TachyonGod
not rated yet Oct 24, 2017
That crystal of CaFe2As2 looks a hell of a lot like Elvis!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.