Parasite study paves way for infection therapies

Fresh insight into how a harmful parasite harnesses the energy it needs to function could point towards therapies to prevent potentially fatal diseases.

New understanding of the infectious parasite, known as leishmania – which is spread by biting sandflies – points towards ways to limit its impact. The findings could help curb related infections, which cause a million cases of disease and kill 20,000 to 30,000 people around the world each year.

Crystal imaging

Researchers used sophisticated imaging techniques to show how drugs could be designed to kill the parasite by targeting a key linked to its metabolism. A team from the University of Edinburgh studied how activity in this enzyme, called LmFBPase, is controlled by another molecule known as AMP.

Using crystal structures, they revealed the by which AMP prevents the enzyme from functioning. Scientists compared this to the equivalent process in humans, and found that it works in a slightly different way.

Treatment opportunity

AMP binds differently to the enzyme in humans compared with in . These differences provide opportunities to develop molecules that would target the enzyme in parasites, but would have no effect on people. The study, published in the Journal of Molecular Biology, was supported by Wellcome, the Scottish University Life Sciences Alliance and the Biotechnology and Biological Sciences Research Council.

"Our detailed studies show how drugs might be developed to target these deadly parasites, without causing additional harm to affected people," says Professor Malcolm Walkinshaw.

More information: Meng Yuan et al, Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition, Journal of Molecular Biology (2017). DOI: 10.1016/j.jmb.2017.08.010

Journal information: Journal of Molecular Biology

Citation: Parasite study paves way for infection therapies (2017, October 10) retrieved 29 September 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Enzyme discovery paves way to tackling deadly parasite diseases


Feedback to editors