Europe's first all-electric telecom satellite

October 17, 2017, European Space Agency
Eutelsat-172B is the first European telecommunications satellite to demonstrate electric propulsion for orbit-raising and stationkeeping in geostationary orbit. The satellite is equipped with two articulated thruster arms. Credit: Airbus Defence and Space

Europe's first all-electric telecom satellite has reached its final working orbit above the Pacific Ocean. Eutelsat-172B, built for Eutelsat by Airbus, carries new technologies developed through ESA-led projects, including fully articulated thruster arms.

The relied entirely on electric thrusters to climb from its initial orbit into its planned slot over the equator some 35 800 km up, and is now using them to hold position.

"Electric propulsion is at least an order of magnitude more efficient than standard chemical propulsion for satellites," explains ESA specialist Jose Gonzalez Del Amo.

"By electrically charging propellant and accelerating it using electrical power from solar arrays, much more energy is squeezed out of each breath of gaseous propellant.

"This opens up the option of flying lighter satellites because they can fly on smaller launchers. Or a greater percentage of the same mass can be dedicated to the revenue-earning payload in place of bulky propellant tanks.

"The main trade-off is that all-electric satellites take much longer to reach their final orbit because electric propulsion provides low thrust, firing continuously to accelerate gradually over time."

Eutelsat-172B – the first to fly of six Eurostar E3000 all-electric platforms sold so far to telecom companies by Airbus – reached its working orbit some four months after its 2 June launch.

Eutelsat-172B is equipped with a pair of 3 m-long three-jointed arms carrying electric propulsion thrusters at the end. Instead of thrusters embedded at the corners of the satellite, these twin arms can be moved freely about its body so their thrusts can always be aligned precisely with the satellite’s centre of gravity for orbit raising and stationkeeping – saving propellant to elongate mission life. Credit: Airbus Defence and Space

Already a commercial success, this platform includes several innovations developed through ESA's long-running Advanced Research in Telecommunications Systems programme, as well as the equivalent Plan d'Investissements d'Avenir programme of France's CNES space agency.

"All-electric telecom satellites have been in service globally since 2015, but Eurostar E3000 has a novel addition: a pair of 3 m-long three-jointed arms carrying thrusters on the end," explains ESA structural engineer Mario Toso.

"Instead of having different thrusters embedded at corners of the satellite, the twin arms can be moved freely about its body. 

 "One big advantage is that the thrusters can always be aligned precisely with the satellite's centre of gravity for orbit raising and stationkeeping – saving propellant to elongate mission life.

Vacuum chamber in Propulsion Lab. Credit: ESA-A. Le Floc'h
"And this flexibility means the thrusts can be choreographed around antennas and solar wings which might otherwise be struck by plumes."

A second project developed the thrusters' power processing unit – the interface between them and the rest of the satellite's power system.

"The thrusters operate on a high voltage, receiving lower voltage inputs from the rest of the satellite," says ESA power systems engineer Michail Tourloukis. "This unit helps to ensure that electrical noise from their operation does not come back inside the satellite."

Improved versions of E3000's thruster arms and power unit are now included in Airbus's next-generation satellite platform, Eurostar Neo, which they are developing under ESA's Neosat programme. 

Eutelsat-172B, Europe’s first all-electric telecommunications satellite, built by Airbus Defence and Space. Credit: Airbus Defence and Space

ESA's Giorgio Saccoccia comments: "This game-changing electric propulsion on European commercial and scientific satellites is the result of more than two decades of development by ESA, in strong collaboration with national agencies and European companies.

"The achievement of Eutelsat-172B is a reward for the role that ESA has played with our partners, boosting the competitiveness of European products."

Explore further: Image: T6 ion thruster firing

Related Stories

Image: T6 ion thruster firing

April 27, 2016

The eerie blue exhaust trail of an ion thruster during a test firing. A quartet of these highly efficient T6 thrusters is being installed on ESA's BepiColombo spacecraft to Mercury at ESA's ESTEC Test Centre in Noordwijk, ...

Four steps nearer Mercury

September 7, 2016

The base of ESA's Mercury Transfer Module with its four T6 ion thrusters fully fitted for its 6.5 year journey to Mercury, along with the rest of the BepiColombo spacecraft.

The revolutionary ion engine that took spacecraft to Ceres

March 9, 2015

The NASA spacecraft Dawn has spent more than seven years travelling across the Solar System to intercept the asteroid Vesta and the dwarf planet Ceres. Now in orbit around Ceres, the probe has returned the first images and ...

NASA tests thruster bound for metal world

September 29, 2017

As NASA looks to explore deeper into our solar system, one of the key areas of interest is studying worlds that can help researchers better understand our solar system and the universe around us. One of the next destinations ...

Recommended for you

Tiny 'water bears' can teach us about survival

March 20, 2019

Earth's ultimate survivors can weather extreme heat, cold, radiation and even the vacuum of space. Now the U.S. military hopes these tiny critters called tardigrades can teach us about true toughness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.