Cell contacts in embryonic development determine cellular fate

October 12, 2017, Institute of Science and Technology Austria
Cell contacts in embryonic development determine cellular fate
Artistic 3-D rendering of a zebrafish prechordal plate, showing progenitor cells either forming a compact cluster and differentiating into prechordal plate cells or leaving the cluster and differentiating into endoderm. Credit: Vanessa Barone / IST Austria

The average human has about 37.2 trillion cells. But cells are differentiated for thousands of different functions. How does a cell 'know' which function to fulfill? In a paper published today in Developmental Cell, the group of Carl-Philipp Heisenberg at the Institute of Science and Technology Austria (IST Austria), including first author and Ph.D. student Vanessa Barone, sheds light on how a cell's fate is determined. Ffor the first time, they report a positive feedback loop between the duration of cell-cell contacts and the specification of a cell's function.

Cells do not just sit passively alongside each other. Instead, neighbouring cells can form contacts with each other—connections of different size, strength and duration that reach from one cell to another. Heisenberg and his group used the zebrafish to investigate whether signaling between cells and cell-cell contact formation affect each other, and influence how a cell's is determined.

The researchers looked at progenitor within the forming anterior axial mesendoderm that give rise to either the head mesoderm or endoderm of the developing embryo. In this system, the authors identified a positive feedback loop between cell-cell contact formation and cell fate specification: when mesendoderm form long-lasting cell-cell contacts, they become head mesoderm cell types, while short-lasting contacts result in endoderm cell types.

Cell-cell contact formation and cell fate specification promote each other by contact formation triggering high Nodal/TGFβ-mediated cell-cell signaling, required for head mesoderm cell fate specification and differentiation; nodal signaling, in turn, promotes cell-cell contact formation. The authors thereby identified cell-cell contact duration (as opposed to e.g. the number or size of cell-cell contacts) as a key feature in controlling the level of cell-cell signaling determining binary cell fate decisions during embryonic development.

Explore further: 3-D organoids and RNA sequencing reveal the crosstalk driving lung cell formation

More information: Developmental Cell (2017). DOI: 10.1016/j.devcel.2017.09.014

Related Stories

Neural stem cells control their own fate

August 18, 2016

To date, it has been assumed that the differentiation of stem cells depends on the environment they are embedded in. A research group at the University of Basel now describes for the first time a mechanism by which hippocampal ...

Cells take sole responsibility for Merkel cell maintenance

January 26, 2015

Researchers have identified a population of "progenitor" cells in the skin that are solely responsible for the generation and maintenance of touch-sensing Merkel cells. The study appears in The Journal of Cell Biology.

Stem cells: Keeping differentiation in check

February 27, 2013

Researchers at the A*STAR Institute of Medical Biology (IMB) have discovered a critical checkpoint protein that controls when human embryonic stem cells (hESCs) begin to differentiate.

Recommended for you

Predators learn to identify prey from other species

March 21, 2018

Wolves purportedly raised Romulus and Remus, who went on to rule Rome. Is there good scientific evidence for learning across species? Researchers at the Smithsonian Tropical Research Institute (STRI) in Panama wanted to know ...

Insects could help us find new yeasts for big business

March 21, 2018

Yeasts are tiny fungi - but they play key roles in producing everything from beer and cheese to industrial chemicals and biofuels. And now scientists are proposing a new approach that could help these industries find new ...

Promiscuity may have accelerated animal domestication

March 21, 2018

Domestication of wild animals may have accelerated as promiscuity increased among the high density populations drawn to life near humans, according to a new paper by University of Liverpool researchers.

Monkeys use tools to crack nuts, shuck oysters

March 21, 2018

Wild macaque monkeys have learned to use tools to crack open nuts and even shuck oysters, researchers said Wednesday, identifying a rare skill-set long thought to be the exclusive party trick of humans and chimps.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.