Rapid imaging of granular matter

September 21, 2017 by Oliver Morsch, ETH Zurich
Researchers at ETH have used magnetic resonance imaging to make bubbles visible inside granular media through which a gas flows (left). The velocities of the individual particles (arrows in the right-hand image) could also be measured in this way. Credit: Alexander Penn / ETH Zurich

Granular systems such as gravel or powders can be found everywhere, but studying them is not easy. Researchers at ETH Zurich have now developed a method by which pictures of the inside of granular systems can be taken ten thousand times faster than before.

Even in our modern world full of highly technological machines and devices it is still impossible to predict when rockslides, such as the recent one in Graubünden, or earthquakes will occur and how exactly they evolve. This is partly due to the fact that despite many years of research, scientists have only just begun to understand the behaviour of gravel and sand, particularly when mixed with water or gases.

A team of researchers led by Christoph Müller at the Department of Mechanical and Process engineering of the ETH Zurich and Klaas Prüssmann at the Institute for Biomedical Engineering of the ETH and University of Zurich, together with colleagues at Osaka University in Japan, have now developed a new technique that could make it much easier to study such phenomena in the future. Many natural phenomena and natural catastrophes could thus be better understood and predicted more easily.

Powders and grains in the chemical industry

Granular systems - a generic term for anything that resembles grains or powders - play a pivotal role not just in nature. They are equally important in practical applications, such as the chemical industry, where three quarters of the raw materials are granular substances. A frequent problem facing the is that production flows may be interrupted, for instance, by unforeseen and poorly understood jamming or de-mixing of the granular materials used.

"Even a small increase in the efficiency of the production processes through improved knowledge would allow one to save a lot of energy", explains Alexander Penn, a PhD student in the group of Müller and Prüssmann. However, when trying to understand what happens, for instance, when different particles are mixed together or made to interact with gases in so-called fluidized beds, one faces a serious problem: granular systems are opaque, which makes it very difficult to learn anything about the exact spatial distribution and motion of the particles.

Medical technology aids studies of granular systems

To overcome this obstacle, scientists have reintroduced a technology into physics research that, nowadays, is mainly used in medicine: (MRI), which is well-known for the narrow tube patients need to go into to be examined. Magnetic resonance imaging uses radio waves and strong magnetic fields to first align the magnetic moments of certain inside a tissue or material (these can be visualized as tiny compass needles).

Thereafter, the atomic nuclei lose their alignment, and in doing so, they themselves emit radio waves that can be measured. Finally, the results of those measurements are used to create a three-dimensional image of the positions of the atomic nuclei in the material. In their new experiments, recently published in the scientific journal Science Advances, the researchers at ETH added a number of radio antennas to a commercial MRI device and analysed the measurements using special software. This allowed them to measure the internal dynamics of granular systems ten thousand times faster than had been possible before.

For that purpose, the scientists developed special particles consisting of an oil droplet covered in agar measuring one millimetre in diameter that produced a particularly large and sustained magnetic resonance signal. They used them, amongst other things, to study what happens when a gas flows through granular systems. The gas flow causes the , which is usually solid, to behave like a fluid. In such "fluidized" granular systems gas bubbles can rise, split up or merge.

Until now, it was impossible to study such bubbles in real time. The new measurement technique developed by the Zurich-based scientists allows one to take pictures of the inside of with a temporal resolution of less than a hundredth of a second. Moreover, a clever analysis of the signals makes it possible to measure the velocities of the individual particles and, thus, to obtain additional information about the dynamics of those complex systems.

Applications in carbon capture

There are numerous possible applications of the knowledge obtained using the new technique. The researchers are planning, for instance, to carefully test existing theoretical models for granular systems and, where necessary, to improve them. Among the models to be tested are the spontaneous de-mixing of granular mixtures of particles having different sizes, which can lead to problems in industrial applications, as well as the spontaneous "jamming" of flowing systems. Bubble formation in exposed to gas flows, on the other hand, is important for procedures in which a gas is supposed to react as strongly as possible with catalyst particles. Such procedures are used, for example, in carbon dioxide capture, which in the future might be used to counteract climate change. A better understanding of the physical processes involved could lead to higher efficiency and considerable energy savings.

Explore further: Granular media friction explained: Da Vinci would be proud

More information: Alexander Penn et al, Real-time probing of granular dynamics with magnetic resonance, Science Advances (2017). DOI: 10.1126/sciadv.1701879

Related Stories

Granular media friction explained: Da Vinci would be proud

July 12, 2017

New York | Heidelberg, 12 July 2017 Leonardo Da Vinci had already noticed it. There is a very peculiar dynamics of granular matter, such as dry sand or grains of wheat. When these granular particles are left on a vibrating ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

Hydrodynamics approaches to granular matter

March 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

Recommended for you

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.