Electrically heated textiles now possible

September 28, 2017 by Janet Lathrop
A three-layered glove developed by materials chemist Trisha Andrew has one layer coated by the conducting polymer PEDOT and is powered by a button battery weighing 1.8 grams. Credit: UMass Amherst

Commuters, skiers, crossing guards and others who endure frozen fingers in cold weather may look forward to future relief as manufacturers are poised to take advantage of a new technique for creating electrically heated cloth developed by materials scientist Trisha Andrew and colleagues at the University of Massachusetts Amherst. They have made gloves that keep fingers as warm as the palm of the hand.

In a new paper in Applied Materials & Interfaces, the scientists describe how they use a vapor deposition method for nano-coating fabric to create sewable, weavable, electrically heated material. The demonstration glove they made can keep toasty for up to eight hours. The three-layered glove, with one layer coated by the conducting polymer poly(3,4-ethylenedioxytiophene), also known as PEDOT, are powered by a button battery weighing 1.8 grams. A dime weighs just under 2.27 grams.

The authors point out, "Lightweight, breathable and body-conformable electrical heaters have the potential to change traditional approaches to personal thermal management, medical heat therapy, joint pain relief and athletic rehabilitation."

Andrew says, "We took a pair of cotton gloves and coated the fingers to allow a small amount of current to pass through, so they heat up. It's regular old-fashioned cotton cloth. We chose to make a pair of gloves because the fingers require a high curvature that allows us to show that our material is really flexible. The glove is powered by a small coin battery and they run on nano-amps of current, not enough to pass current through your skin or to hurt you. Our coating works even when it's completely dunked in water, it will not shock you, and our layered construction means the conductive cloth does not come into contact with your skin."

She adds, "We hope to have this reach consumers as a real product in the next few years. Maybe it will be two years to a prototype, and five years to the consumer. I think this is the most consumer-ready device we have. It's ready to take to the next phase."

Until recently, textile scientists have not used vapor deposition because of technical difficulties and high cost of scaling up from the laboratory. But recently, manufacturers are finding that the technology can be scaled up while remaining cost-effective, the researchers say. Using the vapor deposition method described in their paper, Andrew and colleagues also coated threads of a thick cotton yarn commonly used for sweaters. It performed well and offers another avenue for creating heated clothing, the authors state.

Andrew says, "One thing that motivated us to make this product is that we could get the flexibility, the nice soft feel, while at the same time it's heated but not making you sweaty. A common thing we hear from commuters is that in the winter, they would love to have warmer fingers." In their laboratory tests, her research team reports, four fingers of the test glove warmed to the same temperature as the palm, and "the wearer could feel the heat transferred from the fabric heaters to her fingers a few seconds after the voltage was applied."

Andrew and chemistry postdoctoral researcher Lushuai Zhang, with chemical engineering graduate student Morgan Baima, conducted several tests to assure that their could stand up to hours of use, laundering, rips, repairs and overnight charging. Andrew notes, "Right now we use an off-the-shelf battery that lasts for eight hours, but you would need a rechargeable to make these more practical."

Further, "If you are skiing and rip your glove, you can repair it just by sewing it back together with plain thread."

They arranged for biocompatibility testing at an independent lab where mouse connective tissue cells were exposed to PEDOT-coated samples and responses compared to positive and negative controls. They report that their PEDOT-coated materials are safe for contact with human skin without causing adverse reactions to the chemicals used.

They also addressed questions of heat, moisture and skin contact stability to prevent the wearer from experiencing any electric shock from a wet conducting element. Andrew says, "Chemically, what we use to surround the conductive cloth looks like polystyrene, the stuff used to make packing peanuts. It completely surrounds the conducting material so the electrical conductor is never exposed."

Experimenting with different variables in the vapor nano-coating process, they found that adjusting temperature and chamber pressure were important in achieving optimal surface coverage of the cloth. In a test of the fabric's ability to resist cracking, creasing or other changes when heated, they generated a temperature of 28 degrees C (82.4 F) with connection to a 4.5-V battery and 45 degrees C (113 F) connected to a 6-V battery for an hour, and found "no dramatic morphology changes," indicating that the PEDOT-coated cotton textile was rugged and stable enough to maintain its performance" when used as a heating element.

Explore further: Off-the-shelf, power-generating clothes are almost here: Scientists introduce coating that turns fabrics into circuits

More information: Lushuai Zhang et al. Transforming Commercial Textiles and Threads into Sewable and Weavable Electric Heaters, ACS Applied Materials & Interfaces (2017). DOI: 10.1021/acsami.7b10514

Related Stories

Watches, LEDs powered by yarn battery

August 25, 2017

(Phys.org)—Researchers have fabricated rechargeable batteries by using highly conductive yarns that have a diameter and flexibility similar to that of a piece of cotton yarn. The new yarn battery can be woven into fabric ...

Using sugar molecules to make cotton material glow

September 15, 2017

(Phys.org)—A team of researchers from Germany, Israel and Austria has developed a process for imbuing cotton fibers with material that glows under fluorescent light. In their paper published in the journal Science, the ...

Recommended for you

Bacteria development marks new era in cellular design

December 11, 2017

Scientists at the universities of Kent and Bristol have built a miniature scaffold inside bacteria that can be used to bolster cellular productivity, with implications for the next generation of biofuel production.

Molecular beacon signals low oxygen with ultrasound

December 8, 2017

Areas of hypoxia, or low oxygen in tissue, are hallmarks of fast-growing cancers and of blockages or narrowing in blood vessels, such as stroke or peripheral artery disease. University of Illinois researchers have developed ...

Targeting cancer cells by measuring electric currents

December 8, 2017

EPFL researchers have used electrochemical imaging to take a step forward in mapping the distribution of biomolecules in tissue. This technology, which uses only endogenous markers – rather than contrast agents – could ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
not rated yet Sep 28, 2017
This should be applicable for space suits as well? Thinner, cheaper, more uniform distribution, localized variation to counter hot and cold spots, movement betwern sun and shade, etc
vora_rohit
not rated yet Sep 30, 2017
I do not want to be rude to the authors, but the correct name of polymers is Poly(3,4-ethylenedioxythiophene). The polymer is 'conjugated polymer' having alternating double- & single-bonds in its chain. It is well known that in such polymers overlapping p-orbitals create a system of delocalized π-electrons, thereby creates an interesting & useful electrical conductivity besides optical electronic and properties. Among them polyaniline is very well known. In 2000 Prof. Alan Heeger, Prof. Alan MacDiarmid and Prof. Hideki Shirakawa received a Nobel Prize in Chemistry for the discovery & development of conductive polymers. If the PEDOT coated fabric is further developed with robust electrical efficiency and economical power consumption, and made electric shock proof when wet, and most importantly, receives FDA approval, it will see the light of commercialization come early 2020s. I sure would rush to buy a pair of garment/gloves made from such polymer coated fabric.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.