Scientists find soil bacteria require two-layer security, just like digital world

August 22, 2017, University of Wyoming
Credit: Mick Lissone/public domain

Those people at Google think they're sooooo smart. So, too, the Apple and Microsoft wunderkinds.

Their software (and many others) use two-factor authentication in the digital world to verify identity, but they're a little behind. A one-celled soil bacterium beat them to it by who knows how many millions of years.

University of Wyoming Ph.D. student Chris Vassallo in molecular biologist Dan Wall's laboratory found the bacterium Myxococcus xanthus performs its equivalent of a secret handshake after an initial meet-and-greet encounter in its social world. The second level of verification is important. They die if not recognized.

Their results are described in "Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria," published last week in the open-access journal eLife.

Earlier research in Wall's lab found these bacteria recognize kin through the called TraA and transfer cellular goods to each other when touching via a process the lab calls outer membrane exchange (OME). This current research is about the cargo that's exchanged.

M. xanthus's social lifestyle requires them to cooperate with their kin or close family members.

"It's very important these know who they are cooperating with," says Vassallo, from Cheyenne. "They don't want to give beneficial treatment to another cell they are competing with if it's not their self. One way they do this is through toxin exchange."

The cells exchange potentially toxic proteins during OME. The process takes a couple of minutes.

"If their identities don't match, they'll kill each other with the toxins," Vassallo says.

The toxic cocktail of proteins moves from cell to cell, chewing up DNA or RNA if the cell is not immune. Vassallo says these bacteria don't die immediately. Although sick, they are able to infect other cells, similar to humans with a transmittable disease.

Wall's laboratory found the bacteria use a receptor that is unique to M. xanthus. In the wild, underfoot outdoors, there are hundreds of different recognition receptors within the myxobacteria group.

Just using the TraA receptor for identity verification is not enough. A few grams of soil might contain a hundred distinct M. xanthus social groups, all living together but not necessarily wanting to cooperate with one another, Wall says.

Vassallo discovered the second layer of specificity, he says.

"The first layer is, 'Do you have a compatible TraA receptor?' If you do, you exchange components," Wall says. "Then the next layer is, 'Do you have immunity to the collection of toxins I'm going to give you using this exchange process?'"

The bacterial decimation, where kin kill nonkin as packs of cells converge, results in a kill zone. Not all exchanges result in death and destruction. Vassallo found in previous research healthy bacteria repair damaged kin. He designed an experiment where cells had defective membranes and left on their own would die. But, if mixed with healthy kin, the clonemates would give them healthy material, and the sick cells become rejuvenated.

Wall's research is part of a $1.2 million grant from the National Institutes of Health. It follows a previous $1.6 million, five-year grant. The research helps address how multicellular animals and plants came into existence.

The evolutionary transition from single cell to multicell life is apparently very difficult, Wall says. The event is thought to have occurred only once for animals and perhaps twice for plants.

"In the microscopic world, it might have happened separately a couple dozen of times," Wall says. "In the case of myxobacteria, they appear to have made this transition to multicellularity, a fairly primitive transition that's based on an aggregation strategy, and OME plays a role in this process."

Explore further: Researchers discover 'switch' that allows microbes to recognize kin

More information: Christopher N Vassallo et al. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria, eLife (2017). DOI: 10.7554/eLife.29397

Related Stories

Bacteria cooperate to repair damaged siblings

May 21, 2015

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve the fitness of ...

Even bacteria use social networks

July 19, 2013

The next time your Facebook stream is filled with cat videos, think about Myxococcus xanthus. The single-cell soil bacterium also uses a social network. But forget silly distractions. M. xanthus relies on its connections ...

How nature engineered the original rotary motor

April 13, 2017

The bacterial flagellum is one of nature's smallest motors, rotating at up to 60,000 revolutions per minute. To function properly and propel the bacterium, the flagellum requires all of its components to fit together to exacting ...

E. coli bacteria's defense secret revealed

June 13, 2017

By tagging a cell's proteins with fluorescent beacons, Cornell researchers have found out how E. coli bacteria defend themselves against antibiotics and other poisons. Probably not good news for the bacteria.

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.