Nanomaterials help spiders spin the toughest stuff

August 14, 2017, Institute of Physics

Spiders' silk is already tough stuff—just ask your friendly neighbourhood Spiderman.

But now, researchers in Italy and the UK have found a way to make Spidey's a lot stronger, using various different spider species and carbon nanotubes or graphene.

The research team, led by Professor Nicola Pugno at the University of Trento, Italy, succeeded in having their spiders produce silk with up to three times the strength and ten times the toughness of the regular material.

Their discovery, published today in the journal 2D Materials, could pave the way for a new class of bionicomposites, with a wide variety of uses.

Professor Pugno said: "Humans have used silkworm silks widely for thousands of years, but recently research has focussed on spider silk, as it has extremely promising mechanical properties. It is among the best spun polymer fibres in terms of tensile strength, ultimate strain, and especially toughness, even when compared to synthetic fibres such as Kevlar."

"We already know that there are biominerals present in in the protein matrices and hard tissues of insects, which gives them high strength and hardness in their jaws, mandibles and teeth, for example. So our study looked at whether spider silk's properties could be 'enhanced' by artificially incorporating various different nanomaterials into the silk's biological protein structures."

To do this, the team exposed three different spider species to water dispersions containing carbon nanotubes or graphene.

After collecting the spiders' silk, the team tested its tensile strength and toughness.

Professor Pugno said: "We found that the strongest silk the spiders spun had a fracture strength up to 5.4 gigapascals (GPa), and a toughness modulus up to 1,570 joules per gram (J/g). Normal , by comparison, has a fracture strength of around 1.5 GPa and a toughness modulus of around 150 J/g."

"This is the highest toughness discovered to date, and a comparable to that of the strongest carbon fibres or limpet teeth. These are still early days, but our results are a proof of concept that paves the way to exploiting the naturally efficient spinning process to produce reinforced bionic silk fibres, thus further improving one of the most promising strong materials." "These silks' high and resistance to ultimate strain could have applications such as parachutes". "Furthermore, this process of the natural integration of reinforcements in biological structural materials could also be applied to other animals and

Explore further: Most stretchable spider silk reported

More information: Emiliano Lepore et al, Spider silk reinforced by graphene or carbon nanotubes, 2D Materials (2017). DOI: 10.1088/2053-1583/aa7cd3

Related Stories

Most stretchable spider silk reported

February 8, 2012

The egg sac silk of the cocoon stalk of the cave spider Meta menardi is the most stretchable egg sac silk yet tested, according to a study published Feb. 8 in the open access journal PLoS ONE.

Green method developed for making artificial spider silk

July 10, 2017

A team of architects and chemists from the University of Cambridge has designed super-stretchy and strong fibres which are almost entirely composed of water, and could be used to make textiles, sensors and other materials. ...

Spiders sprayed with carbon nanotubes spin superstrong webs

May 6, 2015

(Phys.org)—A team of researchers working in Italy has found that simply spraying a spider with a carbon nanotube solution can cause the spider to spin stronger webs. In their paper they have uploaded to the preprint server ...

Recommended for you

Splitting water: Nanoscale imaging yields key insights

July 18, 2018

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel—just as plants do—researchers need to not only identify materials to efficiently perform photoelectrochemical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.