"Fixed-field" accelerator transports multiple particle beams at a wide range of energies through a single beam pipe

August 16, 2017 by Karen Mcnulty Walsh, Brookhaven National Laboratory
Members of the team testing a fixed-field, alternating-gradient beam transport line made with permanent magnets at Brookhaven Lab's Accelerator Test Facility (ATF), left to right: Mark Palmer (Director of ATF), Dejan Trbojevic, Stephen Brooks, George Mahler, Steven Trabocchi, Thomas Roser, and Mikhail Fedurin (ATF operator and experimental liaison). Credit: Brookhaven National Laboratory

An advanced particle accelerator designed at the U.S. Department of Energy's Brookhaven National Laboratory could reduce the cost and increase the versatility of facilities for physics research and cancer treatment. It uses lightweight, 3-D-printed frames to hold blocks of permanent magnets and an innovative method for fine-tuning the magnetic field to steer multiple beams at different energies through a single beam pipe.

With this design, physicists could accelerate particles through multiple stages to higher and higher energies within a single ring of magnets, instead of requiring more than one ring to achieve these energies. In a medical setting, where the energy of particle beams determines how far they penetrate into the body, doctors could more easily deliver a range of energies to zap a tumor throughout its depth.

Scientists testing a prototype of the compact, cost-effective design at Brookhaven's Accelerator Test Facility (ATF)—a DOE Office of Science User Facility—say it came through with flying colors. Color-coded images show how a series of electron beams accelerated to five different energies successfully passed through the five-foot-long curve of magnets, with each tracing a different pathway within the same two-inch-diameter beam pipe.

"For each of five energy levels, we injected the beam at the 'ideal' trajectory for that energy and scanned to see what happens when it is slightly off the ideal orbit," said Brookhaven Lab physicist Stephen Brooks, lead architect of the design. Christina Swinson, a physicist at the ATF, steered the beam through the ATF line and Brooks' magnet assembly and played an essential role in running the experiments.

"We designed these experiments to test our predictions and see how far away you can go from the ideal incoming trajectory and still get the beam through. For the most part, all the beam that went in came out at the other end," Brooks said.

The beams reached energies more than 3.5 times what had previously been achieved in a similar accelerator made from significantly larger electromagnets, with a doubling of the ratio between the highest and lowest energy beams.

"These tests give us confidence that this accelerator technology can be used to carry beams at a wide range of energies," Brooks said.

No wires required

Brooks' proof-of-principle experiment showed that electron beams of five different energies could make their way through the arc of permanent magnets, each taking a somewhat different, color-coded path: dark green (18 million electron volts, or MeV), light green (24MeV), yellow (36MeV), red (54MeV), and purple (70MeV). Credit: Brookhaven National Laboratory

Most particle accelerators use electromagnets to generate the powerful magnetic fields required to steer a beam of charged particles. To transport particles of different energies, scientists change the strength of the by ramping up or down the electrical current passing through the magnets.

Brooks' design instead uses , the kind that stay magnetic without an electrical current—like the ones that stick to your refrigerator, only stronger. By arranging differently shaped magnet blocks to form a circle, Brooks creates a fixed magnetic field that varies in strength across different positions within the central aperture of each donut-shaped magnet array.

When the magnets are lined up end-to-end like beads on a necklace to form a curved arc—as they were in the ATF experiment with assistance from Brookhaven's surveying team to achieve precision alignment—higher energy particles move to the stronger part of the field. Alternating the field directions of sequential magnets keeps particles oscillating along their preferred trajectory as they move through the arc, with no power needed to accommodate particles of different energies.

No electricity means less supporting infrastructure and easier operation—which all contribute to the significant cost savings potential of this non-scaling, fixed-field, alternating-gradient accelerator technology.

Simplified design

Brooks worked with George Mahler and Steven Trabocchi, engineers in Brookhaven's Collider-Accelerator Department, to assemble the deceptively simple yet powerful magnets.

ATF physicist Christina Swinson steered the first beam through the ATF line and the arced magnet assembly and played an essential role in running the experiments. Credit: Brookhaven National Laboratory

First they used a 3-D printer to create plastic frames to hold the shaped magnetic blocks, like pieces in a puzzle, around the central aperture. "Different sizes, or block thicknesses, and directions of allow a customized field within the aperture," Brooks said.

After the blocks were tapped into the frames with a mallet to create a coarse assembly, John Cintorino, a technician in Lab's magnet division, measured the strength of the field. The team then fine-tuned each assembly by inserting different lengths of iron rods into as many as 64 positions around a second 3-D-printed cartridge that fits within the ring of magnets. A computational program Brooks wrote uses the coarse assembly field-strength measurements to determine exactly how much iron goes into each slot. He's also currently working on a robot to custom cut and insert the rods.

The end-stage fine-tuning "compensates for any errors in machining and positioning of the magnet blocks," Brooks said, improving the quality of the field 10-fold over the coarse assembly. The final magnets' properties match or even surpass those of sophisticated electromagnets, which require much more precise engineering and machining to create each individual piece of metal.

"The only high-tech equipment in our setup is the rotating coil we use to do the precision measurements," he said.

Applications and next steps

The lightweight, compact components and simplified operation of Brooks' permanent magnet beam transport line would be "a dramatic improvement from what is currently on the market for delivering in cancer treatment centers," said Dejan Trbojevic, Brooks' supervisor, who holds several patents on designs for particle therapy gantries.

A gantry is the arced beamline that delivers cancer-killing particles from an accelerator to a patient. In some particle therapy facilities the gantry and supporting infrastructure can weigh 50 tons or more, often occupying a specially constructed wing of a hospital. Trbojevic estimates that a gantry using Brooks' compact design would weigh just one ton. That would bring down the cost of constructing such facilities.

Brooks' successful test lays the foundation for the CBETA accelerator, in which bunches of electrons will be accelerated to four different energies and travel simultaneously within the same beampipe, as shown in this simulation. Credit: Brookhaven National Laboratory
"Plus with no need for electricity [to the magnets] to change field strengths, it would be much easier to operate," Trbojevic said.

The ability to accelerate particles rapidly to higher and higher energy levels within a single accelerator ring could also bring down the cost of proposed future physics experiments, including a muon collider, a neutrino factory, and an electron-ion collider (EIC). In these cases, additional accelerator components would boost the beams to higher energy.

For example, Brookhaven physicists have been collaborating with physicists at Cornell University on a similar fixed-field design called CBETA. That project, developed with funding from the New York State Energy Research and Development Authority (NYSERDA), is a slightly larger version of Brooks' machine and includes all the accelerator components for bringing electron beams up to the energies required for an EIC. CBETA also decelerates electrons once they've been used for experiments to recover and reuse most of the energy. It will also test beams of multiple energies at the same time, something Brooks' proof-of-principle experiment at the ATF did not do. But Brooks' successful test strengthens confidence that the CBETA design is sound.

"Everyone in Brookhaven's Collider-Accelerator Department has been very supportive of this project," said Trbojevic, Brookhaven's Principal Investigator on CBETA.

As Collider-Accelerator Department Chair Thomas Roser noted, "All these efforts are working toward advanced accelerator concepts that will ultimately benefit science and society as a whole. We're looking forward to the next chapter in the evolution of this technology."

Explore further: Energy-efficient accelerator was 50 years in the making

Related Stories

Energy-efficient accelerator was 50 years in the making

July 6, 2017

With the introduction of CBETA, the Cornell-Brookhaven ERL Test Accelerator, Cornell University and Brookhaven National Laboratory scientists are following up on the concept of energy-recovering particle accelerators first ...

Computer-assisted accelerator design

April 22, 2014

Stephen Brooks uses his own custom software tool to fire electron beams into a virtual model of proposed accelerator designs for eRHIC. The goal: Keep the cost down and be sure the beams will circulate in this proposed next-generation ...

Compact cancer-therapy particle-delivery system patented

May 12, 2009

(PhysOrg.com) -- As part of an effort to make high-precision particle cancer therapy accessible to more patients, a physicist at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory has developed a simpler, ...

The crown jewel of the HL-LHC magnets

June 26, 2017

While the LHC is at the start of a new season of data taking, scientists and engineers around the world are working hard to develop brand new magnets for the LHC upgrade, the High-Luminosity LHC (HL-LHC).

New magnet at Fermilab achieves high-field milestone

April 6, 2015

Last month, a new superconducting magnet developed and fabricated at Fermilab reached its design field of 11.5 Tesla at a temperature nearly as cold as outer space. It is the first successful twin-aperture accelerator magnet ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.