An interaction of slipping beams

Accelerators generate beams of subatomic particles for cutting-edge science. The greater a beam's intensity, the more opportunities there are to study particle interactions. One way to increase the intensity is to merge two ...

Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough ...

New collider concept would take quantum theories to an extreme

A new idea for smashing beams of elementary particles into one another could reveal how light and matter interact under extreme conditions that may exist on the surfaces of exotic astrophysical objects, in powerful cosmic ...

Spinning new targets for accelerators

Bob Zwaska, a scientist at the U.S. Department of Energy's Fermilab, was watching a contestant on the cooking show Chopped spin sugar for their dessert when he realized the same principle might be applicable to accelerator ...

Quantum optical cooling of nanoparticles

When a particle is completely isolated from its environment, the laws of quantum physics start to play a crucial role. One important requirement to see quantum effects is to remove all thermal energy from the particle motion, ...

Quasiparticles experimentally shown to interfere for first time

Qubits, the units used to encode information in quantum computing, are not all created equal. Some researchers believe that topological qubits, which are tougher and less susceptible to environmental noise than other kinds, ...

page 1 from 12