2-D materials clean up their act

August 2, 2017, University of Manchester
Credit: University of Manchester

Two-dimensional materials such as graphene may only be one or two atoms thick but they are poised to power flexible electronics, revolutionise composites and even clean our water.

However, being this thin comes at a price: the functional properties we depend on will change if the material becomes contaminated.

Luckily, many 2-D exhibit the 'self-cleaning phenomenon', meaning when different 2-D materials are pressed together, stray molecules from the air and the lab are pushed out leaving large areas clear of impurities.

Since graphene's isolation in 2004 a whole host of other 2-D materials have been discovered each with a range of different properties.

When graphene and other 2-D materials are combined, the potential of these new materials comes alive.

Layering stacks of 2-D materials in a precisely chosen sequence can produce called heterostructures that can be fine-tuned to achieve a specific purpose (from LEDs, to water purification, to ).

These flat regions have yielded some of the most fascinating physics of our time. Now, the assumption that these areas are completely clean is under scrutiny.

Writing in Nano Letters a team of researchers at the National Graphene Institute at The University of Manchester have shown that even the gas within which the 2-D material stacks are assembled can affect the structure and properties of the materials.

Credit: University of Manchester

They found that for one class of 2-D materials called the (TMDCs), some had a very large gap between them and their neighbour; a distance unexplained by theoretical calculations done by Professsor Katsnelson and Dr Rudenko at Radboud University, Netherlands.

These observations all seemed to point to the presence of impurities between the 2-D materials. To confirm this, 2-D materials were stacked in a pure Argon gas atmosphere using a sealed chamber (known as a glove-box) in which the environment can be completely controlled.

Where previously the same material had given large gaps between neighbours, this time gave distances matching those predicted by theory for a clean interface free from impurities.

Dr Aidan Rooney, who imaged the structures using high resolution electron microscopy, explained:

"By taking a side view of these sandwich structures we can see how these unique materials stick together and discover new secrets we have previously missed."

Dr Sarah Haigh, who led the team of researchers who carried out this work said:

"This sort of insight is changing how we build devices like LEDs and sensors from 2-D materials. The properties of these devices were known to depend heavily on how and where we make them, and for the first time we have observed why."

The consequences of this finding will directly impact on how we make graphene devices for future applications, showing that even the environment within which 2-D material stacks are assembled affects the atomic structure and properties.

Explore further: Searching beyond graphene for new wonder materials

More information: Aidan. P. Rooney et al. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures, Nano Letters (2017). DOI: 10.1021/acs.nanolett.7b01248

Related Stories

Searching beyond graphene for new wonder materials

May 31, 2017

Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004. Now researchers are going beyond graphene and preparing other 2-D films with ...

New method of characterizing graphene

May 30, 2017

Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other ...

Recommended for you

Fast computer control for molecular machines

January 19, 2018

Scientists at the Technical University of Munich (TUM) have developed a novel electric propulsion technology for nanorobots. It allows molecular machines to move a hundred thousand times faster than with the biochemical processes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.