The critical point in breaking the glass problem

August 14, 2017, University of Bristol
'Ideal glass'. Credit: University of Bristol

Famously described as 'the deepest problem in solid state physics' by Nobel Laureate, Philip Andersen, the glass transition, by which a liquid transforms into a solid without freezing, is shedding its mystique.

Until now, researchers' understanding has been splintered at best, with mutually incompatible interpretations of the physical processes underlying the emergence of amorphous solids (glasses).

Now a team of scientists from the University of Bristol and Johannes Gutenberg Universität Mainz in Germany may have found the missing fragment, enabling the reconciliation of differing interpretations.

Dr Paddy Royall from the University of Bristol's School of Physics, explained: "The challenge boils down to whether glass is a true solid in its own right - the so-called thermodynamic - or whether in essence glass is 'just' a very viscous liquid, albeit with a viscosity so large that pouring a 'glass' of glass would take around a million times the age of the universe - the so-called dynamic interpretation."

In the thermodynamic interpretation, upon sufficient cooling, a very unusual material known as an 'ideal glass' would form.

Such an ideal glass, like a crystal, has only one way of organizing the constituent atoms - yet mysteriously, is amorphous and disordered.

The paradox of how there can be only one way of arranging the atoms in a disordered material remains, but measurements made by the Anglo-German collaboration indicate that their samples are very close to the ideal glass.

The Bristol team, led by Dr Royall and Dr Francesco Turci, worked with Professor Thomas Speck in Mainz to produce novel methods to produce samples exceptionally close to ideal glasses.

Dr Royall said: "In doing so, they found that the dynamical interpretation of the seems to end at a 'critical point', which is close to, or even coincides with, the temperature at which the ideal glass is formed.

"In other words, the dynamical and thermodynamic interpretations of the transition are different reflections of the same underlying phenomenon."

Explore further: A new way of making glass

More information: 'Nonequilibrium Phase Transition in an Atomistic Glassformer: The Connection to Thermodynamics' Francesco Turci, C. Patrick Royall, Thomas Speck in Physical Review X. DOI: 10.1103/PhysRevX.7.031028

Related Stories

A new way of making glass

November 9, 2012

(Phys.org)—A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are arranged around each ...

Is glass a true solid?

January 21, 2015

Does glass ever stop flowing? Researchers at the University of Bristol and Kyoto University have combined computer simulation and information theory, originally invented for telephone communication and cryptography, to answer ...

A plane with wings of glass?

June 22, 2008

Imagine a plane that has wings made out of glass. Thanks to a major breakthrough in understanding the nature of glass by scientists at the University of Bristol, this has just become a possibility.

Towards better metallic glasses

October 25, 2016

Researchers from the University of Bristol have used state-of-the-art computer simulation to test a theory from the 1950s that when atoms organise themselves into 3D pentagons they supress crystallisation.

Recommended for you

Physicists demonstrate new method to make single photons

July 23, 2018

Scientists need individual photons for quantum cryptography and quantum computers. Leiden physicists have now experimentally demonstrated a new production method. Publication in Physical Review Letters on July 23rd.

A phonon laser operating at an exceptional point

July 20, 2018

The basic quanta of light (photon) and sound (phonon) are bosonic particles that largely obey similar rules and are in general very good analogs of one another. Physicists have explored this analogy in recent experimental ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.