A uranium-based compound improves manufacturing of nitrogen products

July 19, 2017, Ecole Polytechnique Federale de Lausanne
An illustration of how the uranium-based compound developed in this study would work. Credit: Marinella Mazzanti/EPFL

Nitrogen is abundantly available in nature and forms the basis for many valuable products, both natural and artificial. This requires a reaction known as "nitrogen fixation", whereby molecular nitrogen is split into two atoms of nitrogen that can then be connected to other elements like carbon or hydrogen. But performing nitrogen fixation to make ammonia on an industrial scale requires harsh conditions with very high temperature and pressure. EPFL scientists have now developed a uranium-based compound that allows nitrogen fixation to take place in ambient conditions. The work, published in Nature, forms a basis for the development of more efficient catalysts, while it highlights new concepts that can be expanded to metals beyond uranium.

Despite being widely used, ammonia is not that easy to make. The main method for producing ammonia on an industrial level today is the Haber-Bosch process, which uses an iron-based catalyst and temperatures around 450oC and pressure of 300 bar—almost 300 times the pressure at sea level.

The reason is that —as found in the air—does not react very easily with other elements. This makes a considerable challenge. Meanwhile, numerous microorganisms have adapted to perform nitrogen fixation under normal conditions and within the fragile confines of a cell. They do this by using enzymes whose biochemistry has inspired chemists for applications in industry.

The lab of Marinella Mazzanti at EPFL synthesized a complex containing two uranium(III) ions and three potassium centers, held together by a nitride group and a flexible metalloligand framework. This system can bind nitrogen and split it in two in ambient, mild conditions by adding hydrogen and/or protons or carbon monoxide to the resulting nitrogen complex. As a result, the molecular nitrogen is cleaved, and bonds naturally with hydrogen and carbon.

The study proves that a molecular uranium complex can transform molecular nitrogen into value-added compounds without the need for the of the Haber-Bosch process. It also opens the door for the synthesis of beyond , and forms the basis for developing catalytic processes for the production of nitrogen-containing organic molecules from molecular nitrogen.

Explore further: Research reveals way to improve nitrogen production in legumes

More information: Marta Falcone et al, Nitrogen reduction and functionalization by a multimetallic uranium nitride complex, Nature (2017). DOI: 10.1038/nature23279

Related Stories

A battery prototype powered by atmospheric nitrogen

April 13, 2017

As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy. But nitrogen gas—which consists of two nitrogen atoms held together by a strong, triple covalent bond—doesn't ...

The world's nitrogen fixation, explained

September 23, 2015

Yale University scientists may have cracked a part of the chemical code for one of the most basic, yet mysterious, processes in the natural world—nature's ability to transform nitrogen from the air into usable nitrogen ...

Recommended for you

Wearable device measures cortisol in sweat

July 20, 2018

The hormone cortisol rises and falls naturally throughout the day and can spike in response to stress, but current methods for measuring cortisol levels require waiting several days for results from a lab. By the time a person ...

Researchers report two-faced Janus membrane applications

July 20, 2018

Named for the mythical god with two faces, Janus membranes—double-sided membranes that serve as gatekeepers between two substances—have emerged as a material with potential industrial uses. Creating two distinct "faces" ...

Chemists characterize the fatal fungus among us

July 19, 2018

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenges is that the fungal cell wall is poorly understood, ...

Infrared sensor as new method for drug discovery

July 19, 2018

Using an infrared sensor, biophysicists at Ruhr-Universität Bochum (RUB) have succeeded in analysing quickly and easily which active agents affect the structure of proteins and how long that effect lasts. Thus, Prof Dr. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.