Researchers uncover fresh role for nitric oxide

July 19, 2017 by Lindsey Hadlock, Cornell University
Space-filling model of nitric oxide. Credit: public domain

Cornell University chemists have uncovered a fresh role for nitric oxide that could send biochemical textbooks back for revision.

They have identified a critical step in the nitrification process, which is partly responsible for agricultural emissions of harmful and its chemical cousins into the atmosphere, contributing to .

Current biochemical models hold that inorganic hydroxylamine is the only intermediary formed when bacteria convert ammonia - used in commercial agricultural fertilizer - into dormant nitrite. In this new study, the chemists found that hydroxylamine is converted into another intermediary - - which under normal soil conditions acts as the chemical prelude to nitrite. But under imperfect soil conditions, nitric oxide is converted into the potent greenhouse gas nitrous oxide. The work was published in the Proceedings of the National Academy of Sciences, July 17.

"We've found a hole in the nitrogen cycle pipeline. As there is nitrous oxide escaping out of the soil into the atmosphere, we now know where the holes are," said co-author Jonathan Caranto, postdoctoral researcher in chemistry. "Nitrous oxide is made from nitric oxide - that's the immediate precursor. If you know where the nitric oxide is coming from, you can make a good guess about nitrous oxide being released."

Understanding how the model works is key to finding greenhouse gas solutions. "This is what the research affords: locating new holes to plug. The holes in the pipeline can be sealed. If you don't fully understand the biochemical pathway, you can't know where the pollutants come from," said co-author Kyle Lancaster, assistant professor of chemistry. "Otherwise, you are shooting in the dark."

In 2015, nitrous oxide comprised about 5 percent of atmospheric emissions, compared with carbon dioxide at 82 percent, according to the U.S. Environmental Protection Agency. Nitrous oxide, however, is an ozone-depleting gas with a global warming potential more than 300 times greater than carbon dioxide, said Caranto. Nitric oxide also contributes to ground-level ozone and produces acid rain.

Nitric oxide plays an important part in medicine. The journal Science named it Molecule of the Year in 1992 for its versatility in heart health. Scientist Robert F. Furchgott, who worked at Cornell Medical College - now Weill Cornell Medicine - from 1941 to 1949, won the 1998 Nobel Prize in physiology or medicine for his role in our understanding of nitric oxide.

The new research shows nitric oxide is formed on the pathway from hydroxylamine to nitrite when soil bacteria use ammonia as chemical fuel. Previously, scientists maintained that hydroxylamine is directly converted to nitrite. "This research could make a huge difference in rearranging predictive nitrogen flux models that scientists use to optimize fertilization practices," said Lancaster.

Greenhouse gas and nitrite production are byproducts of commercial fertilization, and the processes that form them diminish the efficiency of fertilization, said Kyle. "If you can slow down the formation of these species, slow down the oxidation of ammonia in fertilizer, this will raise the 'dwell time' of nitrogen in soil. Agriculture becomes more efficient, more economical and more sustainable."

Knowing this nitric oxide component could help reduce the ratio of cost-to- benefit for farmers and other agricultural producers. Said Lancaster: "This new component to models could lead to better fertilization scheduling."

Explore further: Bacterial mechanism converts nitrogen to greenhouse gas

More information: Jonathan D. Caranto et al, Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1704504114

Related Stories

Bacterial mechanism converts nitrogen to greenhouse gas

November 21, 2016

Cornell researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas. The paper was published online Nov. 17 in the Proceedings of the ...

Greenhouse gases from farmland underestimated

April 2, 2013

(—Changes in agricultural practices could reduce soil emissions of the greenhouse gas nitrous oxide and the atmospheric pollutant nitric oxide, according to a new study by scientists at the University of California, ...

Biochar reduces nasty nitrous oxide emissions on farms

April 29, 2013

( —In the quest to decrease the world's greenhouse gases, Cornell scientists have discovered that biochar – a charcoal-like substance – reduces the nemesis nitrous oxide from agricultural soil on average by ...

Recommended for you

Human influence detected in changing seasons

July 20, 2018

For the first time, scientists from Lawrence Livermore National Laboratory (LLNL) and five other organizations have shown that human influences significantly impact the size of the seasonal cycle of temperature in the lowest ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.