Bacterial mechanism converts nitrogen to greenhouse gas

November 21, 2016 by Blaine Friedlander
Jonathan Caranto, left, Kyle Lancaster, assistant professor of chemistry and chemical biology, and Avery Vilbert examine a thin vial of cytochrome P460 that helps to convert agricultural nitrogen (fertilizer) into nitrous oxide, an ozone-depleting greenhouse gas. Credit: Blaine Friedlander/Cornell Chronicle

Cornell researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas. The paper was published online Nov. 17 in the Proceedings of the National Academy of Sciences.

"The first key to plugging a leak is finding the leak," said Kyle Lancaster, assistant professor of chemistry and chemical biology, and senior author on the research. "We now know the key to the leak and what's leading to it. Nitrous oxide is becoming quite significant in the atmosphere, as there has been a 120 percent increase of in our atmosphere since pre-industrial times."

Lancaster, along with postdoctoral researcher Jonathan D. Caranto and chemistry doctoral candidate Avery C. Vilbert, showed that an enzyme made by the ammonia oxidizing bacterium Nitrosomonas europaea, cytochrome P460, produces nitrous oxide after the organism turns ammonia into an intermediate metabolite called hydroxylamine.

N. europaea and similar "ammonia-oxidizing bacteria" use hydroxylamine as their fuel source, but too much hydroxylamine can be harmful – and the resulting production of nitrous oxide is a chemical coping strategy.

Lancaster and his colleagues hypothesize that when ammonia-oxidizing bacteria are exposed to high levels of nitrogen compounds, such as in crop fields or , then nitrous oxide production via cytochrome P460 will ramp up.

In the atmosphere, greenhouse gases are a soup of many species, and Lancaster explained that nitrous oxide has 300 times the potency of carbon dioxide. "That's a staggering number," he said. "Nitrous oxide is a really nasty agent to be releasing on a global scale."

Lancaster added that nitrous oxide is photochemically reactive and can form free radicals – ozone-depleting agents – which aggravates the issue of blanketing Earth's atmosphere with more gas and raising the globe's temperature. "In addition to its role as a greenhouse gas cloak, it's removing our protective shield," Lancaster said.

The United States is among the world leaders in importing , according to the U.S. Department of Agriculture's Economic Research Service. The Food and Agriculture Organization of the United Nations noted that the world's nitrogen fertilizer demand was projected to be 116 million tons for this past agricultural season.

"For the world, I realize that we are trying to feed more people and that means more fertilizer – and that means more nitrous oxide," said Lancaster, who noted that about 30 percent of come from agriculture and its accompanying land use.

To reduce the negative impact of nitrogen, farmers already use nitrification inhibitors.

Said Lancaster: "While it will be challenging to develop ways to stop this process, now we have pinpointed one biochemical step leading to nitrous production. Future work may lead to inhibitors, molecules that can deactivate or neutralize this bacterial enzyme. Alternatively, we may just use this new information to develop better strategies for nitrogen management."

Explore further: Greenhouse gases from farmland underestimated

More information: Jonathan D. Caranto et al. cytochrome P460 is a direct link between nitrification and nitrous oxide emission, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1611051113

Related Stories

Greenhouse gases from farmland underestimated

April 2, 2013

(Phys.org)—Changes in agricultural practices could reduce soil emissions of the greenhouse gas nitrous oxide and the atmospheric pollutant nitric oxide, according to a new study by scientists at the University of California, ...

Biochar reduces nasty nitrous oxide emissions on farms

April 29, 2013

(Phys.org) —In the quest to decrease the world's greenhouse gases, Cornell scientists have discovered that biochar – a charcoal-like substance – reduces the nemesis nitrous oxide from agricultural soil on average by ...

Waterways contribute to growth of potent greenhouse gas

December 20, 2010

Nitrous oxide, a potent greenhouse gas, has increased by more than 20 percent over the last century, and nitrogen in waterways is fueling part of that growth, according to a Michigan State University study.

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.