Pitted materials in craters could indicate buried ice on asteroids

July 8, 2017
Image of Haulani Crater, Ceres, showing abundant pitted materials on the crater floor. Similar pitted materials have previously been identified on Mars and Vesta, and are associated with rapid volatile release following impact. Their discovery on Ceres indicates pitted materials may be a common morphological indicator of volatile-rich materials in the asteroid belt. Haulani Crater is 34 km in diameter. Color indicates topography. Credit: NASA/MPS/PSI/Thomas Platz

Pitted terrains inside fresh complex craters on Ceres are similar to terrains seen Mars and Vesta, and are likely formed through the rapid evaporation of subsurface H2O, a new paper by Planetary Science Institute Research Scientist Hanna G. Sizemore says.

"Pitted terrains may be common morphological markers of volatile-rich near-surface material in the asteroid belt," Sizemore said.

Sizemore is lead author of "Pitted Terrains on (1) Ceres and Implications for Shallow Subsurface Volatile Distribution" that is published in Geophysical Research Letters. PSI scientists Norbert Schorghofer, Thomas H. Prettyman, David A. Crown, Scott C. Mest and R. Aileen Yingst are among the co-authors on the paper.

"Wherever we send a spacecraft into the Solar System, we're always asking, 'Is there water? Is there ice?' Both questions are important because we're interested in habitability, and because water is a resource that will be needed for manned exploration," Sizemore said.

When pitted crater materials were first described on Mars, they were cited as evidence that even the "dry" low latitude regions of Mars are somewhat ice-rich. When pitted materials were discovered on Vesta, there was a lively debate about whether the water that formed the pits was sourced from Vesta, or whether the impactors that hit Vesta brought it in.

"Now, we've found this same type of morphological feature on Ceres, and the evidence suggests that ice in the Cerean subsurface dominated the formation of pits there," Sizemore said. "Finding this type of feature on three different bodies suggests that similar pits might be found on other asteroids we will explore in the future, and that pitted materials may mark the best places to look for ice on those asteroids.

"We used numerical models to investigate the formation of pitted on Ceres, and investigated the relative importance of ice and other volatiles in pit development there," Sizemore said. "We concluded that likely plays a key role in pit development on Ceres. Similar pitted terrains will be of interest to future asteroid missions motivated by both astrobiology and in situ resource utilization."

Explore further: Scientist conducts first comparison study of central pit impact craters throughout solar system

More information: H. G. Sizemore et al. Pitted Terrains on (1) Ceres and Implications for Shallow Subsurface Volatile Distribution, Geophysical Research Letters (2017). DOI: 10.1002/2017GL073970

Related Stories

Gullies on Vesta suggest past water-mobilized flows

January 23, 2015

(Phys.org)—Protoplanet Vesta, visited by NASA's Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its surface. However, ...

Dawn completes primary mission

July 1, 2016

On June 30, just in time for the global celebration known as Asteroid Day, NASA's Dawn spacecraft completes its primary mission. The mission exceeded all expectations originally set for its exploration of protoplanet Vesta ...

Landslides on Ceres reflect hidden ice

April 18, 2017

Massive landslides, similar to those found on Earth, are occurring on the asteroid Ceres. That's according to a new study led by the Georgia Institute of Technology, adding to the growing evidence that Ceres retains a significant ...

Recommended for you

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.