Physicists gain new insights into nanosystems with spherical confinement

July 26, 2017
Bipolar structure assembled of stiff polymers at low densities. Credit: Arash Nikoubashman, Mainz University

Theoretical physicists led by Professor Kurt Binder and Dr. Arash Nikoubashman at Johannes Gutenberg University Mainz (JGU) in Germany have used computer simulations to study the arrangement of stiff polymers in spherical cavities. These confined systems play an important role for a wide range of applications, such as the fabrication of nanoparticles for targeted drug delivery and for tailored nanomaterials. Furthermore, the investigated systems can give crucial insights into the inner workings of biological problems where confinement effects are crucial, such as the packaging of double-stranded DNA in bacteriophage capsids and the self-assembly of actin filaments in cells.

The simulations have demonstrated that fully flexible chains are homogeneously distributed inside the spherical cavity, with an unstructured surface at the confining sphere. However, when the stiffness of the chains was increased, the polymers aligned in a parallel fashion with the ends ordered on a common equatorial plane. At the same time, complex structures emerged on the sphere surface. At low densities and intermediate stiffness, the chains formed bipolar patterns (see Figure 1), as they are known from onions and globes. As the density and stiffness was increased further, the texture changed to a tennis ball-like structure with four distinct poles (see Figure 2).

These highly unusual states originate from the complex interplay between the packing and bending of the individual polymer chains. On the one hand, it is entropically favorable for stiff chains to align parallel to each other. This so-called nematic phase is, for instance, crucial for the functionality of . On the other hand, the spherical confinement impedes such an order throughout the whole system so that the chains close to the sphere surface have to bend, which is energetically unfavorable. The resulting structures are then the compromise out of these constraints.

These simulations provided the first opportunity to observe and study the self-assembly of stiff polymers in spherical cavities. The researchers around Dr. Arash Nikoubashman and Professor Kurt Binder are confident that their work will help to elucidate the behavior of both naturally occurring and synthetic soft systems in confinement.

Quadripolar tennis ball structure of stiff polymers at high densities. Credit: Arash Nikoubashman, Mainz University

Explore further: Team solves mystery of colloidal chains

More information: Arash Nikoubashman et al, Semiflexible Polymers in Spherical Confinement: Bipolar Orientational Order Versus Tennis Ball States, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.118.217803

Related Stories

Scaling up polymer blobs

September 27, 2012

Scientists use simulations to test the limits of their object of study—in this case thin films of polymers—to extremes of scale. In a study about to be published in the European Physical Journal E, Nava Schulmann, a researcher ...

One step towards faster organic electronics

September 9, 2015

For years we have believed that ordered polymer chains increase the conductivity of plastic. And a new generation of polymers has been developed. It is true that these new polymers are more conductive, but for completely ...

Researchers control soft robots using magnetic fields

March 29, 2017

A team of engineering researchers has made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices. The researchers have ...

New insights into how gels form

July 11, 2016

Gels are found in wide range of products that we use on a day-to-day basis. But what gives gels their solid properties? What stops the particles that they are made up of being able to move like they would in a liquid? A team ...

Recommended for you

Life's building blocks observed in spacelike environment

December 12, 2017

Where do the molecules required for life originate? It may be that small organic molecules first appeared on earth and were later combined into larger molecules, such as proteins and carbohydrates. But a second possibility ...

Teaching antibiotics to be more effective killers

December 12, 2017

Research from the University of Illinois at Chicago suggests bond duration, not bond tightness, may be the most important differentiator between antibiotics that kill bacteria and antibiotics that only stop bacterial growth.

Hot vibrating gases under the electron spotlight

December 12, 2017

Natural gas is used in refineries as the basis for products like acetylene. The efficiency of gaseous reactions depends on the dynamics of the molecules—their rotation, vibration and translation (directional movement). ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.