Physicists turn a crystal into an electrical circuit

July 27, 2017
Credit: Wikipedia/CC BY-SA 3.0

Washington State University physicists have found a way to write an electrical circuit into a crystal, opening up the possibility of transparent, three-dimensional electronics that, like an Etch A Sketch, can be erased and reconfigured.

The work, to appear in the on-line journal Scientific Reports, serves as a proof of concept for a phenomenon that WSU researchers first discovered by accident four years ago. At the time, a doctoral student found a 400-fold increase in the of a crystal simply by leaving it exposed to light.

Matt McCluskey, a WSU professor of physics and materials science, has now used a laser to etch a line in the crystal. With electrical contacts at each end of the line, it carried a current.

"It opens up a new type of electronics where you can define a circuit optically and then erase it and define a new one," said McCluskey. "It's exciting that it's reconfigurable. It's also transparent. There are certain applications where it would be neat to have a circuit that is on a window or something like that, where it actually is invisible electronics."

Ordinarily, a crystal does not conduct electricity. But when the crystal strontium titanate is heated under the right conductions, it is altered so light will make it conductive. The phenomenon, called "," also occurs at room temperature, an improvement over materials that require cooling with liquid nitrogen.

"We're still trying to figure out exactly what happens," said McCluskey. He surmises that heat forces strontium atoms to leave the material, creating light-sensitive defects responsible for the persistent photoconductivity.

McCluskey's recent work increased the crystal's conductivity 1,000-fold. The phenomenon can last up to a year.

"We look at samples that we exposed to light a year ago and they're still conducting," said McCluskey. "It may not retain 100 percent of its conductivity, but it's pretty big."

Moreover, the circuit can be by erased by heating it on a hot plate and recast with an optical pen.

"It's an Etch A Sketch," said McCluskey. "We've done it a few cycles. Another engineering challenge would be to do that thousands of times."

The research was funded by the National Science Foundation. Co-authors on the paper are former students Violet Poole and Slade Jokela.

The work is in keeping with WSU's Grand Challenges, a suite of initiatives aimed at addressing large societal problems. It is particularly relevant to the challenge of Smart Systems and its theme of foundational and emergent materials.

Explore further: Accidental discovery dramatically improves electrical conductivity

More information: Violet M. Poole et al, Using persistent photoconductivity to write a low-resistance path in SrTiO3, Scientific Reports (2017). DOI: 10.1038/s41598-017-07090-2

Related Stories

Controlling proton conduction with light

May 1, 2017

Adding photoacid to a special kind of melted polymeric crystal allows better and switchable proton conductivity. This could lead to new materials for memory, supercapacitor and transistor technologies.

Recommended for you

Quantum data takes a ride on sound waves

September 22, 2017

Yale scientists have created a simple-to-produce device that uses sound waves to store quantum information and convert it from one form to another, all inside a single, integrated chip.

A way to measure and control phonons

September 22, 2017

(Phys.org)—A team of researchers with the University of Vienna in Austria and Delft University of Technology in the Netherlands has developed a technique using photons for controlling and measuring phonons. In their paper ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
5 / 5 (1) Jul 27, 2017
-And also perhaps extremely rugged and heat-resistant as appropriate for use in nuclear-powered tunnel machines working beneath the surface of the moon and other planets
https://phys.org/...ins.html
swordsman
not rated yet Jul 31, 2017
Strontium? Great experiment, and now perhaps they can look for other types of crystals to make it easier and less costly to produce.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.