Oxygen vacancy supported memory

July 12, 2017
Prof. Dr. Lambert Alff (l.) and Sankaramangalam Ulhas Sharath. Credit: Gabi Haindl

A non-volatile memory keeping its digital information without power and working at the same time at the ultrahigh speed of today's dynamic random access memory (DRAM) – that is the dream of materials scientists of TU Darmstadt.

In a recent paper just published online in the high impact journal Advanced Functional Materials, the researchers investigated why based devices are so promising for memory applications and how the material can be tuned to perform at the desired level. This knowledge could be the base for future mass application in all kind of electronic devices.

This novel kind of non-volatile memory saves information by changing the electrical resistance of a metal-insulator-metal structure. The high respectively low resistive states represent zero and one and do not vanish even when the computer is turned off. The main principle of this resistive random access memory (RRAM) has been known for several years, but researchers and developers are still fighting to bring it into real live applications.

Memory based on hafnium oxide is particularly interesting due to its superior properties. However, the devices still cannot be fabricated with low variability and low spread of electronic properties as required for large scale production. Furthermore, the switching behavior is complex and still has not been fully understood.

Oxygen vacancies

The researchers of TU Darmstadt are following a recipe which has been extremely successful in semiconductor : They focus on the defects in the material. "Up to now, it was not entirely clear which physical and chemical material properties govern the resistive switching process," says Prof. Dr. Lambert Alff, head of the Advanced Thin Film Technology group in the Materials Science department of TU Darmstadt. His team focused their research on the role of defects in the functional material.

Using molecular beam epitaxy, a well-known technique from semiconductor technology, the group was able to produce RRAM structures where only the oxygen concentration was varied while all the rest of the device was identical. "By changing the oxygen defect concentration in hafnium oxide we could unambiguously correlate the state of material with the resistive switching behavior of the memory device," explains Sankaramangalam Ulhas Sharath, PhD student in the group and first author of the publication.

Based on these results the researchers developed a unified model connecting all so far reported switching states to the behavior of oxygen vacancies. Another exciting consequence of their work is the discovery that quantized conductance states can be stabilized at room temperature when controlling the oxygen vacancies paving the way for novel quantum technology.

Will RRAM be the replacement for Flash memory?

The improved understanding of the role of might be the key to produce RRAM cells with reproducible properties on a larger scale. Due to its inherent physical limitations it is expected that within the next few years the current prevailing flash technology will be replaced by another technology. It could be RRAM that will be satisfying the ever growing hunger for more energy efficient and ubiquitous in cars, mobiles, fridges etc. It even might be particularly suited for neuromorphic circuits mimicking the functionality of the human brain – a visionary concept.

Explore further: Resistive random-access memory that avoids an initial forming process improves fabrication methods and reliability

More information: Sankaramangalam Ulhas Sharath et al. Control of Switching Modes and Conductance Quantization in Oxygen Engineered HfO x based Memristive Devices, Advanced Functional Materials (2017). DOI: 10.1002/adfm.201700432

Related Stories

Model for 2-D materials-based RRAM found

May 31, 2017

Graphene and related two-dimensional (2-D) materials have raised massive interest and investment during the last years. However, the amount of 2-D materials-based commercial devices available in the market is still very low.

Promising new alloy for resistive switching memory

September 20, 2013

Memory based on electrically-induced "resistive switching" effects have generated a great deal of interest among engineers searching for faster and smaller devices because resistive switching would allow for a higher memory ...

Imec and Panasonic demonstrate breakthrough RRAM cell

July 14, 2015

Imec and Panasonic Corp. announced today that they have fabricated a 40nm TaOx-based RRAM (resistive RAM) technology with precise filament positioning and high thermal stability. This breakthrough result paves the way to ...

Recommended for you

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.